Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] is "(A<->B)->((F A)<->(F B))" provable ?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] is "(A<->B)->((F A)<->(F B))" provable ?


chronological Thread 
  • From: Vincent Aravantinos <vincent.aravantinos AT gmail.com>
  • To: Robin Green <greenrd AT greenrd.org>
  • Cc: gang chen <gangchen_sh AT yahoo.com>, coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] is "(A<->B)->((F A)<->(F B))" provable ?
  • Date: Thu, 14 Feb 2008 11:36:26 +0100
  • Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=in-reply-to:references:mime-version:content-type:message-id:cc:content-transfer-encoding:subject:date:to:x-mailer:from; b=D11yCtYBmQSyJXnGKkzLQiPST41GTmEg0Nl34yFrbaIiPDsoKqpkquWWleYoWh+i2MLjwV9gcQzy2rU9RdrkPE3j1Uz4gz828SHzpp2tefEedVMCk475neXI8Wp7NUV4YvkyLssCXLvDO2xLq732VN+5NTxckoicCpLa+VEGapw=
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Le 14 févr. 08 à 11:26, Robin Green a écrit :

On Thu, 14 Feb 2008 10:54:17 +0100
Vincent Aravantinos 
<vincent.aravantinos AT gmail.com>
 wrote:

Assume you are given two functions (f:Prop -> nat) and (g:nat ->
Prop), and then define a F like this:

Definition F (P:Prop) : Prop -> Prop := g (1 + f P).

I don't see any reason why such a function would respect your
conjecture.

But how can you define a function f : Prop -> nat which yields
different numbers for different propositions, in Coq? You can't do case
analysis on Props.

I think we don't matter if we can't define it in Coq: as soon as we can define it mathematically, the property is false (and thus should not be provable in Coq).

I was actually thinking of a kind of godelisation to define f, if we restrict to first order formulas.

Vincent





Archive powered by MhonArc 2.6.16.

Top of Page