Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Second order unification problem?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Second order unification problem?


chronological Thread 
  • From: Michael Day <mikeday AT yeslogic.com>
  • To: coq-club AT pauillac.inria.fr
  • Subject: [Coq-Club] Second order unification problem?
  • Date: Wed, 09 Apr 2008 21:58:53 +1000
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Hi,

Sorry to bother the list again, but I've been reading the manual and can't find any explanation of this error message:

User error: Cannot solve a second-order unification problem.

I get this error when attempting to prove the following theorem:

Inductive bits : nat -> Set :=
    | Bnil : bits 0
    | Bcons : forall n:nat, bool -> bits n -> bits (S n).

Theorem only_one_bits0 : forall (bs:bits 0), bs = Bnil.
Proof.
intro bs.
case bs. (* fails *)

It seems clear to me that a value of type "bits 0" has to be Bnil, as the other constructor has type "bits (S n)", but I can't figure out how to express this. Any help would be greatly appreciated.

Best regards,

Michael

--
Print XML with Prince!
http://www.princexml.com





Archive powered by MhonArc 2.6.16.

Top of Page