Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] inductive predicate over infinite objects

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] inductive predicate over infinite objects


chronological Thread 
  • From: Pierre Casteran <pierre.casteran AT labri.fr>
  • To: Keiko Nakata <keiko AT kurims.kyoto-u.ac.jp>
  • Cc: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] inductive predicate over infinite objects
  • Date: Tue, 20 Jan 2009 11:54:16 +0100
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Keiko Nakata a écrit :


Indeed, I want to abstract over P. That is, I want to prove something like

forall P, inductively_defined P ->
forall s, P s ->
exists s', "s' is a finite prefix of s such that P s' holds"

But I have no idea how I could define the "inductively_defined" predicate.
Keiko,

I think that my counter-example shows that your definition of
"inductively defined" would be extremely restrictive.
It would be an inductive definition without any reference to infinite
types or terms. So (I believe that) if you can only use inductive definition on
finitely generalted LList, your predicate can only characterize finite lists.



I was thinking maybe there is type system support.

Kind regards,
Keiko

--------------------------------------------------------
Bug reports: http://logical.futurs.inria.fr/coq-bugs
Archives: http://pauillac.inria.fr/pipermail/coq-club
          http://pauillac.inria.fr/bin/wilma/coq-club
Info: http://pauillac.inria.fr/mailman/listinfo/coq-club





Archive powered by MhonArc 2.6.16.

Top of Page