Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] inductive predicate over infinite objects

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] inductive predicate over infinite objects


chronological Thread 
  • From: Taral <taralx AT gmail.com>
  • To: Keiko Nakata <keiko AT kurims.kyoto-u.ac.jp>
  • Cc: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] inductive predicate over infinite objects
  • Date: Tue, 20 Jan 2009 17:06:50 -0800
  • Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:in-reply-to:references:date:message-id:subject:from:to :cc:content-type:content-transfer-encoding; b=gRWCpM22G8AicoD6EdDCxCmNTrcWJxw3g0fhJvBA0gsBpXfOY8HyIHkETnG4tuamsQ o0ijBRweYByGZ2cgn2OSHKNI53vC5E1JR+MibK+oWmUt43A3NiFL07BE6IAx0vhIYHeu HCwgsSKEcbM6menjTFHPsdPPosQgUcZKpTj8w=
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

On Tue, Jan 20, 2009 at 2:44 AM, Keiko Nakata
<keiko AT kurims.kyoto-u.ac.jp>
 wrote:
> forall P, inductively_defined P ->
> forall s, P s ->
> exists s', "s' is a finite prefix of s such that P s' holds"

This *is* your definition.

In other words:

Definition take (A : Type) (n : nat) (s : LList A) := match n, l with
| 0, _ => LNil | S n', LCons a l' => LCons a (take n' l') end.

Definition inductively_defined (A B : Type) (P : LList A -> B) :=
    forall s, P s -> exists n, forall n', n <= n' -> P (take n' s).

-- 
Taral 
<taralx AT gmail.com>
"Please let me know if there's any further trouble I can give you."
    -- Unknown





Archive powered by MhonArc 2.6.16.

Top of Page