Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] inductive predicate over infinite objects

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] inductive predicate over infinite objects


chronological Thread 
  • From: Thorsten Altenkirch <txa AT Cs.Nott.AC.UK>
  • To: Keiko Nakata <keiko AT kurims.kyoto-u.ac.jp>
  • Cc: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] inductive predicate over infinite objects
  • Date: Tue, 20 Jan 2009 07:44:01 -0500
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

I suspect that your question is related to continuity.

Streams over A are (extensionally) isomorphic to (Nat -> Nat). Any function of type (Nat -> Nat) -> Nat can only access a finite segment of its input. This is known as "local continuity" or formally

forall f:Nat -> Nat, exists n:Nat, forall g,h : Nat, -> Nat,(forall i:Nat,i < n -> g i = h i) -> f g = f h

This is is not provable in Coq but it could be added as an axiom.

Cheers,
Thorsten

On 20 Jan 2009, at 04:20, Keiko Nakata wrote:

Hello.

At the risk of exposing my ignorance...

Is it correct that:

Suppose P is a predicate on possibly infinite lists, e.g. LList in CoqArt,
and (P x) holds for some x.
If the definition of P only "involves" induction,
then there is a finite prefix x' of x such that (P x') holds.

Assuming it correct, what would "involves" precisely mean?
And how I might be able to state it in Coq?

With best regards,
Keiko



--------------------------------------------------------
Bug reports: http://logical.futurs.inria.fr/coq-bugs
Archives: http://pauillac.inria.fr/pipermail/coq-club
         http://pauillac.inria.fr/bin/wilma/coq-club
Info: http://pauillac.inria.fr/mailman/listinfo/coq-club


This message has been checked for viruses but the contents of an attachment
may still contain software viruses, which could damage your computer system:
you are advised to perform your own checks. Email communications with the
University of Nottingham may be monitored as permitted by UK legislation.





Archive powered by MhonArc 2.6.16.

Top of Page