coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Dimitris Vekris <dvekris AT hotmail.com>
- To: <coq-club AT pauillac.inria.fr>
- Subject: [Coq-Club] Data Structures
- Date: Sun, 15 Mar 2009 22:22:10 +0200
- Importance: Normal
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
I have a list of objects with type Data that has the property: exists l: nat, such that: if i < l, func d(i) = m if i>= l and l < n, func d(i) < m where n is the length of that list and func a function: Data -> nat. This property can be expressed in the hypothesis following: Require Import String. Require Import List. Inductive Data : Type := data : string -> Data. Variable func : Data -> nat. Hypothesis hypothesis_1 : forall (m : nat)(dummy : Data)(d : list Data), let n := List.length d in exists l , l <= n -> (forall (i : nat) , i < l -> func (nth i d dummy) = m) -> (forall (i : nat) , i >= l /\ i < n -> func (nth i d dummy) < m) . What I am searching for is a way to express this property inside "list Data". I would also like to get rid of Variable dummy, which expresses nothing in my proof and is a pain in the ass for me when it comes to proving lemmas that are associated with Data. Thanks in advance! What can you do with the new Windows Live? Find out |
- [Coq-Club] Data Structures, Dimitris Vekris
- Re: [Coq-Club] Data Structures, Edsko de Vries
- Re: [Coq-Club] Data Structures,
Adam Koprowski
- Re: [Coq-Club] Data Structures,
dimitrisg7
- Re: [Coq-Club] Data Structures,
muad
- Re: [Coq-Club] Data Structures,
dimitrisg7
- Re: [Coq-Club] Data Structures, Edsko de Vries
- Re: [Coq-Club] Data Structures,
Adam Koprowski
- Re: [Coq-Club] Data Structures, Edsko de Vries
- Re: [Coq-Club] Data Structures, Adam Chlipala
- Re: [Coq-Club] Data Structures, muad
- Re: [Coq-Club] Data Structures,
dimitrisg7
- Re: [Coq-Club] Data Structures,
muad
- Re: [Coq-Club] Data Structures,
dimitrisg7
Archive powered by MhonArc 2.6.16.