Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] How can I make this reasoning step in Coq ?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] How can I make this reasoning step in Coq ?


chronological Thread 
  • From: Tillmann Rendel <rendel AT cs.au.dk>
  • To: Matej Kosik <kosik AT fiit.stuba.sk>
  • Cc: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] How can I make this reasoning step in Coq ?
  • Date: Thu, 23 Apr 2009 19:40:02 +0200
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Matej Kosik wrote:
However, I haven't expressed myself clearly enough in what direction I
wanted to progress.

        Lemma foo : (E -> p) -> (E /\ ~p -> False).

helps in the direction I was not interested in.

However, the following:

        Lemma bar : forall P : Prop, (~ P -> False) -> P

would help me to prove NNPP. Thus,  `bar' must be unprovable too without
loading additional axioms from the classical logic (if NNPP is unprovable).

Recall the type of NNPP.

    NNPP : forall p : Prop, ~ ~ p -> p

Since (~x = x -> False) by definition of ~, this is the same as the type of bar. That means that a proof of bar *is* a proof of NNPP.

  Tillmann





Archive powered by MhonArc 2.6.16.

Top of Page