Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] boolean simplification

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] boolean simplification


chronological Thread 
  • From: St�phane Glondu <steph AT glondu.net>
  • To: filou AT labri.fr
  • Cc: coq-club AT inria.fr, pierre.casteran AT labri.fr
  • Subject: Re: [Coq-Club] boolean simplification
  • Date: Mon, 11 Oct 2010 12:28:37 +0200

Le 07/10/2010 11:54, 
filou AT labri.fr
 a écrit :
I was wondering if there exists a tactic to simplify boolean
expressions in hypotheses, such as in a goal of the form

H: a && false && b = true
-------------------------
False

I've tried "contradict H;ring" but it seems that ring doesn't deal with
inequalities.

Indeed, ring deals only with equalities. In your case, you can do "ring_simplify in H" that will turn H into "false = true", which can then be solved by "discriminate".

Note that the boolean ring is declared in terms of andb and xorb. You should be able to express all boolean expressions in terms of these.


Cheers,

--
Stéphane



Archive powered by MhonArc 2.6.16.

Top of Page