Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] well-ordering of natural numbers

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] well-ordering of natural numbers


chronological Thread 
  • From: AUGER <Cedric.Auger AT lri.fr>
  • To: Stéphane Lescuyer <stephane.lescuyer AT inria.fr>, staecker <cstaecker AT fairfield.edu>
  • Cc: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] well-ordering of natural numbers
  • Date: Tue, 12 Oct 2010 14:37:45 +0200
  • Organization: ProVal

As Stephane said; consider an encoding $phi$ of Turing machines in nat,
then the predicate $P: nat -> nat$; $P m n$ stating that $phi n$ and $phi m$
recognize the same language, then how can you hope to be able to prove for a given $n$ that
there is no $m$ such that $m<n$ and $P n m$, that is given a Turing Machine, to prove that
there is (or there is no) other Turing Machine, recognizing the same language, but with
a shorter code.

I think it would be embarrassing if you were able to do such a thing for any $n$.

Le Tue, 12 Oct 2010 11:11:02 +0200, Stéphane Lescuyer <stephane.lescuyer AT inria.fr> a écrit:

I need to use a theorem like this:
Lemma nat_well_ordered: forall (P:nat -> Prop),
 (exists n:nat, P n) -> (exists m:nat, P m /\
   forall k:nat, P k -> k >= m).

Consider the fact that Coq's logic is intuitionistic, and try to think
of this theorem of yours in a constructive manner. If you're given an
n for which P is true, then how are you gonna compute the smallest k
for which P is true?
Indeed, you need to be able to decide if P is true on a given m to
write such a function.  This is why you need the decidability of P to
prove this theorem.

If you're not interested in constructive logic, just assume the
excluded middle and using it you can use prove your theorem by a
simple induction on n.

HTH,
Stéphane


--
Cédric AUGER

Univ Paris-Sud, Laboratoire LRI, UMR 8623, F-91405, Orsay




Archive powered by MhonArc 2.6.16.

Top of Page