Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Problem with a simple proof

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Problem with a simple proof


chronological Thread 
  • From: Jieung Kim <gbali AT kaist.ac.kr>
  • To: Coq Club <coq-club AT inria.fr>
  • Subject: [Coq-Club] Problem with a simple proof
  • Date: Thu, 7 Apr 2011 15:49:32 +0900
  • Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:sender:from:date:x-google-sender-auth:message-id :subject:to:content-type; b=f2Nih2MVX8lMb42uXivHvoCY+lC2M1nknOrcH5E2yNvw4gs41ROJunE47XnNqrYrkC Wijz2ALlIT665vSTJF8gRMSd7Z8qf8R0xvS3hbECzdfrLgtdQ13A0xaJYcbwuSh1Qskm 3DYQOkTyVdB7rEdF4Hv9R7VH7kL9s8Dlt5OFA=

Dear all,

I'm trying to prove the Lemma LC_subset, and I tried to do an induction on list l1.
However, I cannot find a way to prove second subgoal and think additional lemma to prove it.

Could you tell me the way to prove such a lemma?

Thanks.

Require Import List.

Inductive LessCollection: nat -> list nat -> list nat -> Prop :=
    | LCnil: forall n, LessCollection n nil nil
    | LCnoadd: forall n l1 l2 n',
        LessCollection n l1 l2 ->
        ~(le n n') ->
        LessCollection n (n'::l1) l2
    | LCadd: forall n l1 l2 n',
        LessCollection n l1 l2 ->
        le n n' ->
        LessCollection n (n'::l1) (n'::l2).

Lemma LC_subset: forall n l1 l2 l1',
    LessCollection n l1 l2 ->
    exists l2', LessCollection n (l1'++l1) (l2'++l2).
Proof.

--
Jieung Kim ( 김지응 )
Programming Language Research Group, KAIST
E-mail : gbali at kaist.ac.kr
            je1004k at gmail.com
Homepage : plrg.kaist.ac.kr/kje



Archive powered by MhonArc 2.6.16.

Top of Page