coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Jieung Kim <gbali AT kaist.ac.kr>
- To: Coq Club <coq-club AT inria.fr>
- Subject: [Coq-Club] Problem with a simple proof
- Date: Thu, 7 Apr 2011 15:49:32 +0900
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:sender:from:date:x-google-sender-auth:message-id :subject:to:content-type; b=f2Nih2MVX8lMb42uXivHvoCY+lC2M1nknOrcH5E2yNvw4gs41ROJunE47XnNqrYrkC Wijz2ALlIT665vSTJF8gRMSd7Z8qf8R0xvS3hbECzdfrLgtdQ13A0xaJYcbwuSh1Qskm 3DYQOkTyVdB7rEdF4Hv9R7VH7kL9s8Dlt5OFA=
Dear all,
I'm trying to prove the Lemma LC_subset, and I tried to do an induction on list l1.
However, I cannot find a way to prove second subgoal and think additional lemma to prove it.
Could you tell me the way to prove such a lemma?
Thanks.
Require Import List.Inductive LessCollection: nat -> list nat -> list nat -> Prop :=| LCnil: forall n, LessCollection n nil nil| LCnoadd: forall n l1 l2 n',LessCollection n l1 l2 ->~(le n n') ->LessCollection n (n'::l1) l2| LCadd: forall n l1 l2 n',LessCollection n l1 l2 ->le n n' ->LessCollection n (n'::l1) (n'::l2).Lemma LC_subset: forall n l1 l2 l1',LessCollection n l1 l2 ->exists l2', LessCollection n (l1'++l1) (l2'++l2).Proof.
Jieung Kim ( 김지응 )
Programming Language Research Group, KAIST
E-mail : gbali at kaist.ac.kr
je1004k at gmail.com
Homepage : plrg.kaist.ac.kr/kje
- [Coq-Club] Problem with a simple proof, Jieung Kim
- Re: [Coq-Club] Problem with a simple proof,
Pierre Casteran
- Re: [Coq-Club] Problem with a simple proof,
Jieung Kim
- Re: [Coq-Club] Problem with a simple proof,
Adam Chlipala
- Re: [Coq-Club] Problem with a simple proof, Jieung Kim
- Re: [Coq-Club] Problem with a simple proof,
Pierre Casteran
- Re: [Coq-Club] Problem with a simple proof, Jieung Kim
- Re: [Coq-Club] Problem with a simple proof,
Adam Chlipala
- Re: [Coq-Club] Problem with a simple proof,
Jieung Kim
- Re: [Coq-Club] Problem with a simple proof,
Pierre Casteran
Archive powered by MhonArc 2.6.16.