coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Pierre Casteran <pierre.casteran AT labri.fr>
- To: Jieung Kim <gbali AT kaist.ac.kr>
- Cc: Coq Club <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] Problem with a simple proof
- Date: Thu, 07 Apr 2011 09:19:20 +0200
Dear Jieung Kim, You can proceed to an induction on l1', which is used to build l2' step by step. Require Import Peano_dec. Lemma LC_subset: forall n l1 l2 l1', LessCollection n l1 l2 -> exists l2', LessCollection n (l1'++l1) (l2'++l2). Proof. induction l1'; simpl. exists nil;simpl;auto. intro H; destruct (IHl1' H) as [l2' H2]; case (Lt.le_or_lt n a). intro H3;exists (a::l2');constructor 3;simpl;auto. intro H3;exists l2';constructor 2;simpl;auto with arith. Qed. In fact, you can use the same kind of argument to prove also the simpler lemma: Lemma LesCollection_ex : forall n l1, exists l2, LessCollection n l1 l2. The best, Pierre Le 07/04/2011 08:49, Jieung Kim a écrit :
|
- [Coq-Club] Problem with a simple proof, Jieung Kim
- Re: [Coq-Club] Problem with a simple proof, Pierre Casteran
- Re: [Coq-Club] Problem with a simple proof,
Jieung Kim
- Re: [Coq-Club] Problem with a simple proof,
Adam Chlipala
- Re: [Coq-Club] Problem with a simple proof, Jieung Kim
- Re: [Coq-Club] Problem with a simple proof,
Pierre Casteran
- Re: [Coq-Club] Problem with a simple proof, Jieung Kim
- Re: [Coq-Club] Problem with a simple proof,
Adam Chlipala
- Re: [Coq-Club] Problem with a simple proof,
Jieung Kim
- Re: [Coq-Club] Problem with a simple proof, Pierre Casteran
Archive powered by MhonArc 2.6.16.