coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Jean-Francois Monin <jean-francois.monin AT imag.fr>
- To: "Ly Kim Quyen (Gwenhael)" <lykimq AT gmail.com>
- Cc: coq-club AT inria.fr
- Subject: Re: [Coq-Club] Asking about boolean equality function
- Date: Mon, 25 Jul 2011 15:38:43 +0800
Because A <-> B, by definition, is A -> B /\ B-> A.
f : A -> B can be applied to an argument x:A,
g: A <-> B cannot, only (fst g) can.
Hope this helps,
JF
On Mon, Jul 25, 2011 at 10:27:21AM +0800, Ly Kim Quyen (Gwenhael) wrote:
> Lemma bcoef_pos_ok : forall n (p : poly n), bcoef_pos n p = true <->
> coef_pos n p.
>
> Lemma bcoef_pos_ok_2 : forall n (p : poly n), bcoef_pos n p = true ->
> coef_pos n p.
> [...]
>
> My question is: Why I cannot apply the lemma *bcoef_pos_ok* in this
> definition?
> I got the error saying that: "*The expression "bcoef_pos_ok n p" of type
> "bcoef_pos n p = true <-> coef_pos n p"
> cannot be applied to the term "h0" : "bcoef_pos n p = true"* "
> But if I am using the lemma *bcoef_pos_ok_2* it works.
>
> Thank you very much,
> Gwen
- [Coq-Club] Asking about boolean equality function, Ly Kim Quyen (Gwenhael)
- Re: [Coq-Club] Asking about boolean equality function, Jean-Francois Monin
- Re: [Coq-Club] Asking about boolean equality function, David Baelde
- Re: [Coq-Club] Asking about boolean equality function, AUGER Cedric
- Re: [Coq-Club] Asking about boolean equality function, Jean-Francois Monin
Archive powered by MhonArc 2.6.16.