Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] CiC without elim restriction

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] CiC without elim restriction


chronological Thread 
  • From: Bruno Barras <bruno.barras AT inria.fr>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] CiC without elim restriction
  • Date: Mon, 28 Nov 2011 17:51:43 +0100

On 11/28/2011 05:32 PM, Dan Doel wrote:
At the least, Zhaohui Luo's book (Computation and Reasoning: A Type
Theory for Computer Science) describing ECC and UTT notes the
inconsistency of strong impredicative sums. They let you do things
like:

     { P : Prop | True } : Prop

But { P : Prop | True } is equivalent to Prop if you can project out
the first component, giving you essentially

     Prop : Prop

Which is known to cause problems.

To prevent this, you need to restrict the elimination rules for these
impredicative sums in some way. I assume that's the sort of
restriction you were referring to?

Maybe this is implicit in what you are saying but let me just emphasize that only *big* impredicative sums (i.e. with at least one constructor argument type not in Prop, like in your example) are inconsistent.
Small impredicative sums like { x:nat | P x } could have unrestricted eliminations (be aware that this contradicts proof-irrelevance and excluded-middle). This can be experimented with by mapping all Prop notions to their Set counterpart (ex -> sig, or -> sum, etc.) and using Coq with the -impredicative-set option.

The consistency of Coq with -impredicative-set and just one (and a half) universe is proved in Benjamin Werner's PhD. Don't know of any extension of this result to the full Type hierarchy, but it is believed to hold.

Bruno.

--
Bruno Barras                    Typical team - INRIA Saclay
LIX - Ecole Polytechnique       91128 Palaiseau Cedex - France
Tel: +33 1 69 33 40 57          Fax: +33 1 69 33 30 14



Archive powered by MhonArc 2.6.16.

Top of Page