Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] CiC without elim restriction

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] CiC without elim restriction


chronological Thread 
  • From: Bruno Barras <bruno.barras AT inria.fr>
  • To: Dan Doel <dan.doel AT gmail.com>
  • Cc: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] CiC without elim restriction
  • Date: Tue, 29 Nov 2011 12:47:30 +0100

On 11/28/2011 08:44 PM, Dan Doel wrote:
On Mon, Nov 28, 2011 at 11:51 AM, Bruno 
Barras<bruno.barras AT inria.fr>
  wrote:
On 11/28/2011 05:32 PM, Dan Doel wrote:

At the least, Zhaohui Luo's book (Computation and Reasoning: A Type
Theory for Computer Science) describing ECC and UTT notes the
inconsistency of strong impredicative sums. They let you do things
like:

     { P : Prop | True } : Prop

But { P : Prop | True } is equivalent to Prop if you can project out
the first component, giving you essentially

     Prop : Prop

Which is known to cause problems.

To prevent this, you need to restrict the elimination rules for these
impredicative sums in some way. I assume that's the sort of
restriction you were referring to?

Maybe this is implicit in what you are saying but let me just emphasize that
only *big* impredicative sums (i.e. with at least one constructor argument
type not in Prop, like in your example) are inconsistent.
Small impredicative sums like { x:nat | P x } could have unrestricted
eliminations (be aware that this contradicts proof-irrelevance and
excluded-middle). This can be experimented with by mapping all Prop notions
to their Set counterpart (ex ->  sig, or ->  sum, etc.) and using Coq with the
-impredicative-set option.

Yes. That doesn't really even register as impredicative to me.

I should have said "small sum in an impredicative sort". It's not always clear what the impredicative word applies to: is it each feature that is considered impredicative or not, or is it the whole theory ?

What is clear to me is that the impredicative product types of Set have a global impact on the theory. For instance it is incompatible with interpreting each predicative product (in Type) as the set of set-theoretic functions (that's the Chicli-Pottier-Simpson paradox).

Bruno.

--
Bruno Barras                    Typical team - INRIA Saclay
LIX - Ecole Polytechnique       91128 Palaiseau Cedex - France
Tel: +33 1 69 33 40 57          Fax: +33 1 69 33 30 14



Archive powered by MhonArc 2.6.16.

Top of Page