coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Marcus Ramos <marcus.ramos AT univasf.edu.br>
- To: "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: [Coq-Club] Help with proof
- Date: Tue, 12 Nov 2013 12:07:24 -0200
Hi,
In the proof state below:
1 subgoals
r' : re
r'' : re
a' : f_automata
a'' : f_automata
H : re_fa_equiv_concept r' a' /\ re_fa_equiv_concept r'' a''
s : string
H0 : fa_belongs_p s (fa_uni a' a'')
______________________________________(1/1)
re_matches r' (Some s) \/ re_matches r'' (Some s)
where:
Lemma fa_uni_str:
forall s: string,
forall a1 a2: f_automata,
(fa_belongs_p s a1) \/ (fa_belongs_p s a2) -> (fa_belongs_p s (fa_uni a1 a2)).
I want to add to the context the new hypothesis H1: (fa_belongs_p s a') \/ (fa_belongs_p s a'') (assumptions of the lemma above).
However, Coq does not accept the tactic "apply (fa_uni_str s a' a'') in H0" ("Unable to unify"). What is wrong? How can this be done?
Thank you.
Marcus.
- [Coq-Club] Help with proof, Marcus Ramos, 11/12/2013
- Re: [Coq-Club] Help with proof, Laurent Théry, 11/12/2013
- Re: [Coq-Club] Help with proof, Marcus Ramos, 11/12/2013
- Re: [Coq-Club] Help with proof, Laurent Théry, 11/12/2013
Archive powered by MHonArc 2.6.18.