coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Laurent Théry <Laurent.Thery AT inria.fr>
- To: Marcus Ramos <marcus.ramos AT univasf.edu.br>
- Cc: "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] Help with proof
- Date: Tue, 12 Nov 2013 15:23:46 +0100
On 11/12/2013 03:07 PM, Marcus Ramos
wrote:
Hi,
In
the proof state below:
1
subgoals
r' : re
r''
: re
a'
: f_automata
a''
: f_automata
H
: re_fa_equiv_concept r' a' /\ re_fa_equiv_concept r'' a''
s
: string
H0
: fa_belongs_p s (fa_uni a' a'')
______________________________________(1/1)
re_matches
r' (Some s) \/ re_matches r'' (Some s)
where:
Lemma fa_uni_str:
forall s: string,
forall a1 a2: f_automata,
(fa_belongs_p s
a1) \/ (fa_belongs_p s a2) -> (fa_belongs_p s (fa_uni
a1 a2)).
I
want to add to the context the new hypothesis H1: (fa_belongs_p
s a') \/ (fa_belongs_p s a'') (assumptions
of the lemma above).
However,
Coq does not accept the tactic "apply (fa_uni_str s a'
a'') in H0" ("Unable to unify"). What is wrong? How can
this be done?
Apply in an assumption works the other way around if you have H0 : A and H1 : A -> B apply H1 in H0 gives you H0 : B. -- Laurent Thank
you.
Marcus.
|
- [Coq-Club] Help with proof, Marcus Ramos, 11/12/2013
- Re: [Coq-Club] Help with proof, Laurent Théry, 11/12/2013
- Re: [Coq-Club] Help with proof, Marcus Ramos, 11/12/2013
- Re: [Coq-Club] Help with proof, Laurent Théry, 11/12/2013
Archive powered by MHonArc 2.6.18.