coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Marcus Ramos <marcus.ramos AT univasf.edu.br>
- To: Laurent Théry <Laurent.Thery AT inria.fr>
- Cc: "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] Help with proof
- Date: Tue, 12 Nov 2013 13:02:18 -0200
You are right. I used to converse lemma and managed to complete the proof. Thanks a lot.
Marcus.
2013/11/12 Laurent Théry <Laurent.Thery AT inria.fr>
Apply in an assumption works the other way around if you have H0 : A and H1 : A -> BOn 11/12/2013 03:07 PM, Marcus Ramos wrote:
Hi,
In the proof state below:
1 subgoalsr' : rer'' : rea' : f_automataa'' : f_automataH : re_fa_equiv_concept r' a' /\ re_fa_equiv_concept r'' a''s : stringH0 : fa_belongs_p s (fa_uni a' a'')______________________________________(1/1)re_matches r' (Some s) \/ re_matches r'' (Some s)
where:
Lemma fa_uni_str:forall s: string,forall a1 a2: f_automata,(fa_belongs_p s a1) \/ (fa_belongs_p s a2) -> (fa_belongs_p s (fa_uni a1 a2)).
I want to add to the context the new hypothesis H1: (fa_belongs_p s a') \/ (fa_belongs_p s a'') (assumptions of the lemma above).
However, Coq does not accept the tactic "apply (fa_uni_str s a' a'') in H0" ("Unable to unify"). What is wrong? How can this be done?
apply H1 in H0 gives you H0 : B.
--
Laurent
Thank you.
Marcus.
- [Coq-Club] Help with proof, Marcus Ramos, 11/12/2013
- Re: [Coq-Club] Help with proof, Laurent Théry, 11/12/2013
- Re: [Coq-Club] Help with proof, Marcus Ramos, 11/12/2013
- Re: [Coq-Club] Help with proof, Laurent Théry, 11/12/2013
Archive powered by MHonArc 2.6.18.