Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Help with proof

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Help with proof


Chronological Thread 
  • From: Marcus Ramos <marcus.ramos AT univasf.edu.br>
  • To: Laurent Théry <Laurent.Thery AT inria.fr>
  • Cc: "coq-club AT inria.fr" <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] Help with proof
  • Date: Tue, 12 Nov 2013 13:02:18 -0200

You are right. I used to converse lemma and managed to complete the proof. Thanks a lot.

Marcus.


2013/11/12 Laurent Théry <Laurent.Thery AT inria.fr>
On 11/12/2013 03:07 PM, Marcus Ramos wrote:
Hi,

In the proof state below:

1 subgoals
r' : re
r'' : re
a' : f_automata
a'' : f_automata
H : re_fa_equiv_concept r' a' /\ re_fa_equiv_concept r'' a''
s : string
H0 : fa_belongs_p s (fa_uni a' a'')
______________________________________(1/1)
re_matches r' (Some s) \/ re_matches r'' (Some s)

where:

Lemma fa_uni_str: 
      forall s: string, 
      forall a1 a2: f_automata, 
      (fa_belongs_p s a1) \/ (fa_belongs_p s a2) -> (fa_belongs_p s (fa_uni a1 a2)).

I want to add to the context the new hypothesis H1: (fa_belongs_p s a') \/ (fa_belongs_p s a'') (assumptions of the lemma above).

However, Coq does not accept the tactic "apply (fa_uni_str s a' a'') in H0" ("Unable to unify"). What is wrong? How can this be done?


Apply in an assumption works the other way around if you have H0 : A and H1 : A -> B

apply H1 in H0 gives you H0 : B.

--
Laurent

Thank you.

Marcus.





Archive powered by MHonArc 2.6.18.

Top of Page