Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] constructive proof of (P1 <-> ~ P2) <-> (~ P1 <-> P2)

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] constructive proof of (P1 <-> ~ P2) <-> (~ P1 <-> P2)


Chronological Thread 
  • From: Michel Levy <michel.levy1948 AT gmail.com>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] constructive proof of (P1 <-> ~ P2) <-> (~ P1 <-> P2)
  • Date: Thu, 25 Feb 2016 21:16:34 +0100
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=michel.levy1948 AT gmail.com; spf=Pass smtp.mailfrom=michel.levy1948 AT gmail.com; spf=None smtp.helo=postmaster AT mail-wm0-f43.google.com
  • Ironport-phdr: 9a23:hI1UlBFEbU2do3t12YfCLJ1GYnF86YWxBRYc798ds5kLTJ75o8ywAkXT6L1XgUPTWs2DsrQf27WQ7fmrCDFIyK3CmU5BWaQEbwUCh8QSkl5oK+++Imq/EsTXaTcnFt9JTl5v8iLzG0FUHMHjew+a+SXqvnYsExnyfTB4Ov7yUtaLyZ/niKbsotaCPk1hv3mUX/BbFF2OtwLft80b08NJC50a7V/3mEZOYPlc3mhyJFiezF7W78a0+4N/oWwL46pyv50IbaKvdKMhCLdcET4OMmYv5cStuwOQYxGI4y45U24Wnx4AJwXb/VmuW5b6sib+8O5wxjjDbJGmZb8xUDWmqaxsTUm72288Kzcl/TSP2YRLh6VBrUf5qg==

On 25/02/2016 17:52, Stefan Ciobaca wrote:
Hello, coq-club!

I'm wondering if the following is provable constructively:

  forall (P1 P2 : Prop),
    (P1 <-> ~ P2) <-> (~ P1 <-> P2).

The tactic tauto solves it in the presence of EM:

Require Import Classical.

Lemma P1_if_not_P2 :
  forall (P1 P2 : Prop),
    (P1 <-> ~ P2) <-> (~ P1 <-> P2).
Proof.
  intros.
  tauto.
Qed.

But tauto fails without the Classical module.

Best wishes,
Stefan Ciobaca

As Ralf Jung says, tauto is complete for intuitionistic logic. So, if you can't prove this formula with tauto, it mean that the formula is not intuitionistically provable.
I have written (a long time ago) a prover http://teachinglogic.liglab.fr/INT1/index.php which can build a (Kripke) counter-model of this formula.
Warning : in this prover, <-> is written <=> and ~ is written -.

-- 
courriel : michel.levy1948 AT gmail.com
web : http://membres-liglab.imag.fr/michel.levy 
fixe : 04 76 24 33 39
mobile : 06 59 13 42 53



Archive powered by MHonArc 2.6.18.

Top of Page