Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] proof uninformativeness vs. proof irrelevance

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] proof uninformativeness vs. proof irrelevance


Chronological Thread 
  • From: Abhishek Anand <abhishek.anand.iitg AT gmail.com>
  • To: coq-club <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] proof uninformativeness vs. proof irrelevance
  • Date: Sat, 23 Apr 2016 21:55:53 -0400
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=abhishek.anand.iitg AT gmail.com; spf=Pass smtp.mailfrom=abhishek.anand.iitg AT gmail.com; spf=None smtp.helo=postmaster AT mail-yw0-f169.google.com
  • Ironport-phdr: 9a23:GggFWhx1es0LfkrXCy+O+j09IxM/srCxBDY+r6Qd0ewWIJqq85mqBkHD//Il1AaPBtWLra0ewLCP7ujJYi8p39WoiDg6aptCVhsI2409vjcLJ4q7M3D9N+PgdCcgHc5PBxdP9nC/NlVJSo6lPwWB6kO74TNaIBjjLw09fr2zQd6CyZvtnLrrptX6WEZhunmUWftKNhK4rAHc5IE9oLBJDeIP8CbPuWZCYO9MxGlldhq5lhf44dqsrtY4q3wD86Fpy8kVWqLjOq88ULYQWD8hKiU+4NDhnRjFVwqGoHUGBDY4iB1NViHP7BDhXpry+gL8v+xxkH2TN833VrA5WnKr6a5tRFnpiTsIHzE8+WDTzMd3ifQI81qauxVjztuMM8muP/1kc/aFcA==

It implies proof irrelevance, as shown below.

Definition distinguished(T : Type) := exists (a b : T), a <> b.

Definition proof_uninformativeness : Prop := 
  forall (P : Prop)(T : Type)(f : P -> T)(p1 p2 : P), distinguished T -> f p1 = f p2.

Inductive InjectPT (P:Prop) : Type :=
| injectpt :  P -> InjectPT P
| dummy1 : InjectPT P
| dummy2 : InjectPT P.

Lemma distinguishedInjectPT : forall P, distinguished (InjectPT P).
Proof using.
  intros ?. unfold distinguished. exists (dummy1 P), (dummy2 P).
  discriminate.
Qed.

Definition uninject (P:Prop) (ip: InjectPT P) : option P :=
match ip with
| injectpt _ p => Some p
| _ => None
end.

Lemma invertSome (A:Type) (a b: A) :
  Some a = Some b -> a= b.
Proof using.
  intros H.
  inversion H.
  reflexivity.
Qed.
 
Lemma  proof_uninformativeness_implies_proof_irrelevance:
  proof_uninformativeness
  -> forall (P : Prop) (p q : P), p = q.
Proof using.
  intros H ? ? ?.
  specialize (H P (InjectPT P) (injectpt P) p q (distinguishedInjectPT P)).
  apply (f_equal (uninject P)) in H.
  simpl in H.
  apply invertSome in H.
  assumption.
Qed.


On Sat, Apr 23, 2016 at 9:00 PM, Jonathan Leivent <jonikelee AT gmail.com> wrote:


On 04/23/2016 08:41 PM, darktenaibre wrote:
Ah, that notprop predicate prevents this stupid observation though. You can certainly write something like (fun T => forall P : Prop, ~ (@eq Type P T)) which will easily block the previous proof, but it's probably unusable this way. I do not have any idea for a clever solution to this problem though.
On 04/24/2016 02:32 AM, darktenaibre wrote:
On 04/24/2016 02:21 AM, Jonathan Leivent wrote:

Definition proof_uninformativeness := forall (P : Prop)(S : Set)(f : P -> S)(p1 p2 : P), f p1 = f p2.
Hi,
If you take f:=id, isn't it just proof irrelevance ?


Lemma proof_uninformativeness_irrelevance : proof_uninformativeness -> forall (P : Prop) (p q : P), p = q.
  intros pu P; apply pu.
Qed.

Oops - my (embarrassing) mistake having Prop not be a subtype of Set. :-[

So, there would need to be some usable notprop predicate.
Hmm... maybe types having at least 2 distinguished instances are sufficient? :

Definition distinguished(T : Type) := exists (a b : T), a <> b.

Definition proof_uninformativeness := forall (P : Prop)(T : Type)(f : P -> T)(p1 p2 : P), distinguished T -> f p1 = f p2.

Is this a suitable replacement for all interesting use cases of proof irrelevance?

-- Jonathan






Archive powered by MHonArc 2.6.18.

Top of Page