Skip to Content.
Sympa Menu

coq-club - [Coq-Club] More than one ring structure (e.g. modulo ring) for one type

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] More than one ring structure (e.g. modulo ring) for one type


Chronological Thread 
  • From: "Soegtrop, Michael" <michael.soegtrop AT intel.com>
  • To: "coq-club AT inria.fr" <coq-club AT inria.fr>
  • Subject: [Coq-Club] More than one ring structure (e.g. modulo ring) for one type
  • Date: Fri, 14 Jul 2017 12:34:14 +0000
  • Accept-language: de-DE, en-US
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=michael.soegtrop AT intel.com; spf=Pass smtp.mailfrom=michael.soegtrop AT intel.com; spf=None smtp.helo=postmaster AT mga01.intel.com
  • Dlp-product: dlpe-windows
  • Dlp-reaction: no-action
  • Dlp-version: 10.0.102.7
  • Ironport-phdr: 9a23:Ee4gWBxyAcChZLXXCy+O+j09IxM/srCxBDY+r6Qd2+keIJqq85mqBkHD//Il1AaPBtSEraocw8Pt8InYEVQa5piAtH1QOLdtbDQizfssogo7HcSeAlf6JvO5JwYzHcBFSUM3tyrjaRsdF8nxfUDdrWOv5jAOBBr/KRB1JuPoEYLOksi7ze6/9pnRbglSmDaxfa55IQmrownWqsQYm5ZpJLwryhvOrHtIeuBWyn1tKFmOgRvy5dq+8YB6/ShItP0v68BPUaPhf6QlVrNYFygpM3o05MLwqxbOSxaE62YGXWUXlhpIBBXF7A3/U5zsvCb2qvZx1S+HNsDwULs6Wymt771zRRHolikJKiI5/m/UhMxxkK1UrwmsqAZjz4PQeoyZKOZycr3bcNgHRWRBRMFRVylZD4+ycoUPCPQOPelEr4nnoFsOtQOyDhSrCuPu1jBIhmX50rM+0+gvDArL2wkgH9MSv3TUttr6KqMSXfquzKnP0zrDYO9W2S366IjQaR0hoPeMXa5ufsrV00UgCwTFjlCJpIHjIjib2OMNs22B4OphU+Kik28nqwdtojexwscgkJTGiZwTx1vZ9it52J44KcC8RUJle9KpEJtduzuaOodoWM8vQGJltD4nxrAHt5O3ZiYHxZo9yxLBZfGKd5KE7g/gWeqMOTt0mXNodbalixqs8UWtxffwWteu3FpUsyZJj9/BvW0X2RPJ8MiIUP5981+h2TmR0wDT7flJIUU7laXBN5It36Q8lpsVsUTfACD2nF/6g7ORdkUh4uSo6uLnbav6ppKEKoN5jh/yPr4ul8G/G+g1MhYCU3KY9Om/zLHj+Ff2QLROjv04iKnZt5XaKNwepq64HwBV0pws5Ai7Dzu8y9QYmmcILF1ZeBKdiIjpI0rDIPH+DfejnVuslC1nyOzBPr3kGpnNNGTMkK/9fbZh7E5R0BY8zddG555NFr4BJO/zVVTqudzDDh45NhS0zPz9BNV80IMeQ2OPDbWDPKPcq1/brt4odqOHY5ZQszLgIdAk4eTvhDk3gxVVKaKuxN4cbG2yNvVgOUSQJ3T21IQvC2AP60AFS+HllEeFSXobQne5X6sx4ntzXIenBofKS4Trm7uM0zuhGYV+Z2ZaB1TKGnDtIdbXE8wQYT6fd5cy2gcPUqKsHtcs

Dear Coq Users/Team,

 

I sometimes want to have two ring structures defined for one type using different operators. An example is the usual ring for Z and a modulo ring for Z. The ring tactic seems to select the ring structure to use based on the type of coefficients and variables, not on the operators used in the term. Also the ring tactic does not allow to specify a ring explicitly. So I wonder how I can use several ring structure for the same type in one proof.

 

Best regards,

 

Michael

Intel Deutschland GmbH
Registered Address: Am Campeon 10-12, 85579 Neubiberg, Germany
Tel: +49 89 99 8853-0, www.intel.de
Managing Directors: Christin Eisenschmid, Christian Lamprechter
Chairperson of the Supervisory Board: Nicole Lau
Registered Office: Munich
Commercial Register: Amtsgericht Muenchen HRB 186928




Archive powered by MHonArc 2.6.18.

Top of Page