Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] logical simplification

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] logical simplification


Chronological Thread 
  • From: Tadeusz Litak <tadeusz.litak AT gmail.com>
  • To: coq-club AT inria.fr, Gergely Buday <gbuday AT gmail.com>
  • Subject: Re: [Coq-Club] logical simplification
  • Date: Mon, 14 May 2018 12:11:52 +0200
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=tadeusz.litak AT gmail.com; spf=Pass smtp.mailfrom=tadeusz.litak AT gmail.com; spf=None smtp.helo=postmaster AT mail-wm0-f49.google.com
  • Ironport-phdr: 9a23:2YP5Yx81Oy2vCv9uRHKM819IXTAuvvDOBiVQ1KB31ugcTK2v8tzYMVDF4r011RmVBd6ds6oMotGVmpioYXYH75eFvSJKW713fDhBt/8rmRc9CtWOE0zxIa2iRSU7GMNfSA0tpCnjYgBaF8nkelLdvGC54yIMFRXjLwp1Ifn+FpLPg8it2O2+55Pebx9UiDahfLh/MAi4oQLNu8cMnIBsMLwxyhzHontJf+RZ22ZlLk+Nkhj/+8m94odt/zxftPw9+cFAV776f7kjQrxDEDsmKWE169b1uhTFUACC+2ETUmQSkhpPHgjF8BT3VYr/vyfmquZw3jSRMNboRr4oRzut86ZrSAfpiCgZMT457HrXgdF0gK5CvR6tuwBzz4vSbYqINvRxY7ndcMsHS2RfUMZfVy9PDI2yYIQADeUOIf1VoJPhq1YUtxayGQehCeHpxzRVhnH2x6o60+E5HA/YxgMvAswBsGnPrNT0KawcV+G1zLXSwjXAcvhb3iv955LVfR8/vPGMRrNxfdDVyUkuCwPKlFaQpJfqPzOQzOsNsmyb4/B8WuKojm4qsgd8qSWhyMcrj4nGnIMVylbc+CV32oY6O8O3SEh8YdG5DpRcrSeaOJVqQs4kXmpmuz46x6UEtJO0ZiQG1Yoryh7FZ/GEbYSE+B3uWeKJLTtlin9pZaiziwux/EWj0OHxV9O43EhWoidDj9LCrGoC1wbJ5ciCUvZ9/lmu2TKI1w3L7+FLO0E0la7CJ58vx748ioMfsUrMEyLygkn2g6iWdkIr+uis9evreKnpppiZN4NsiwH+NLohmtCnDOk6PQUCRXWX9fq82bH5/kD1Xq9Gg/Iyn6XBtZDVP8Ubpqq3Aw9P1YYj7g6yDyu839sFg3YHMUlFeROdg4jtOlHOPOr3DfSkjlSjlTdk3fHGPrn7DprRKXjDla/tfaxh5E5E1Aoz0ddf6opIBbEGOfL/Q1P+tNjFDhAiKAG02ObmCNBl1owEQ26PA6mZMLnTsVCS/O4vLfOMN8cpv2P2LOFg7Przh1c4n0UcdO+nx99fR32iEfliMg2zfHblk59VHm0XsgMvZOPvgVyGFzVUYiDhcbg742QHAY6rEJzRDqSsnLWClHOnF5Fbe3tUTFSNDX7rX4qBUvYILimVJ5kywXQ/SbG9Rtp5hlmVvwjgxu8id7KMo3xKhdfYzNFwotbru1Q3/D1wAd6a1jjUHW5xl2IMATQx2fIm+BAv+hK4yaF9xsdgO5lL/foQC1U1MJfdy6pxDNWgAlucLOfMc06vR5CdOR90Tt81xIVTMUN0GtHnkRWbmiT2UvkakLuEAJFy+aXZjSD8

May I suggest not sending all these questions to this mailing list before you finish at least the first volume of SF? Lots of them will be resolved as you read. For some other ones, you can easily consult the official documentation. Only when these two routes fail, ask here (and there is also the Coq IRC channel: irc://irc.freenode.net/#coq)

On 14/05/18 12:03, Gergely Buday wrote:
Hi,

Theorem andb_true_elim2 : forall b c : bool,
  andb b c = true -> c = true.
Proof.
  intros  b c. destruct c.
  - reflexivity.
  - destruct b.
    + simpl.

leads to

1 subgoal
______________________________________(1/1)
false = true -> false = true

which is clearly true but I do not see how this can be resolved with
the tools mentioned in Software Foundations.

I would think of both the premise and the conclusion evaluates to the
builtin_false constant because of the nature of inductive definitions

and then by the usual truth table line

  builtin_false -> builtin_false

should be true.

How can I make this work in Coq?

- Gergely





Archive powered by MHonArc 2.6.18.

Top of Page