Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] logical simplification

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] logical simplification


Chronological Thread 
  • From: Saulo Araujo <saulo2 AT gmail.com>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] logical simplification
  • Date: Mon, 14 May 2018 07:14:39 -0300
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=saulo2 AT gmail.com; spf=Pass smtp.mailfrom=saulo2 AT gmail.com; spf=None smtp.helo=postmaster AT mail-oi0-f49.google.com
  • Ironport-phdr: 9a23:z8YeqxIRZNs/dF2KE9mcpTZWNBhigK39O0sv0rFitYgQLf/xwZ3uMQTl6Ol3ixeRBMOHs6kC07KempujcFRI2YyGvnEGfc4EfD4+ouJSoTYdBtWYA1bwNv/gYn9yNs1DUFh44yPzahANS47xaFLIv3K98yMZFAnhOgppPOT1HZPZg9iq2+yo9JDffwtFiCChbb9uMR67sRjfus4KjIV4N60/0AHJonxGe+RXwWNnO1eelAvi68mz4ZBu7T1et+ou+MBcX6r6eb84TaFDAzQ9L281/szrugLdQgaJ+3ART38ZkhtMAwjC8RH6QpL8uTb0u+ZhxCWXO9D9QLYpUjqg8qhrUgflhygJNzE78G/ZhM9+gr9Frh29vBFw2ZLYbZuPOfZiYq/Qf9UXTndBUMZLUCxBB5uxYZYVAOocOeZYqJT2qkcUrRSkGAmsBuTvwSJPi3/tx6I6zuAhEQbY0AE7ENIOtW7brNTxNKsITe+1y6zIwCzFYvhL2jn98JDFfg49rfyIR759csrcxVMxGw/YjVics4PoMjeT2+8QqWaU9fBgWviqi2M/qwF+vDyvxsA0h4nMnI0Vy1TE+Tx+wIY0OdG0UUB7bNGgHZdKuCGaMIx2QswmQ252oio11roGuZujcCgLzpQo2QLfZuSZf4SU5h/vTuWcLDdiiH57Zb6yhAy+/Eekx+HkU8m7yldKri5LktnWsXAN0gTe6tOdRftg+keh3iiD2hvc6uFBO080lK7bJ4Q9zb43k5ofqV7DETPumEXqkK+WcV0p9fSv6+T+e7npupucN5JvhQzlKaQvmsm/AfwiPQQUXmib//681Lz58kHjTrVKlK5+rq6Mu5fDYM8fu6SRAglP049l5QzsIS2h1YEjlGQDKxpsYhuajY+hb0rHPfT/V9+whl2tlHFgwPWQbe6pOYnEMnWWyOSpRr168UMJkFNin+Aa3IpdD/Q6GNy2X0bwsNLCCRpgal67xu/mDJN20YZMADvTUJ/cC7vbtBqz3sxqO/OFPdZHtzP0Kvxj7Pnr3ydgxA0tOJKx1J5SU0iWW/RrJ0LDPCjpi9YFVGAL5k8wEL2sh1qFXjpeIX21WvBk6w==

I believe intros. trivial. should do Theo job.

Em seg, 14 de mai de 2018 07:03, Gergely Buday <gbuday AT gmail.com> escreveu:
Hi,

Theorem andb_true_elim2 : forall b c : bool,
  andb b c = true -> c = true.
Proof.
  intros  b c. destruct c.
  - reflexivity.
  - destruct b.
    + simpl.

leads to

1 subgoal
______________________________________(1/1)
false = true -> false = true

which is clearly true but I do not see how this can be resolved with
the tools mentioned in Software Foundations.

I would think of both the premise and the conclusion evaluates to the
builtin_false constant because of the nature of inductive definitions

and then by the usual truth table line

  builtin_false -> builtin_false

should be true.

How can I make this work in Coq?

- Gergely



Archive powered by MHonArc 2.6.18.

Top of Page