Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] logical simplification

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] logical simplification


Chronological Thread 
  • From: Théo Zimmermann <theo.zimmi AT gmail.com>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] logical simplification
  • Date: Mon, 14 May 2018 13:14:17 +0200
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=theo.zimmi AT gmail.com; spf=Pass smtp.mailfrom=theo.zimmi AT gmail.com; spf=None smtp.helo=postmaster AT mail-vk0-f49.google.com
  • Ironport-phdr: 9a23:MqQt8RC0nDDAUceCNoR8UyQJP3N1i/DPJgcQr6AfoPdwSPv+o8bcNUDSrc9gkEXOFd2Cra4c0KyO6+jJYi8p2d65qncMcZhBBVcuqP49uEgeOvODElDxN/XwbiY3T4xoXV5h+GynYwAOQJ6tL1LdrWev4jEMBx7xKRR6JvjvGo7Vks+7y/2+94fcbglUijexe69+IAmrpgjNq8cahpdvJLwswRXTuHtIfOpWxWJsJV2Nmhv3+9m98p1+/SlOovwt78FPX7n0cKQ+VrxYES8pM3sp683xtBnMVhWA630BWWgLiBVIAgzF7BbnXpfttybxq+Rw1DWGMcDwULs5Xymp4aV2Rx/ykCoIODA5/2PXhMJ+j6xVvQyvqABkzoHOfI2YLuBzcr/Bcd4YQ2dKQ8ZfVzZGAoO5d4YBEeoBOvxfr4blpFQOrB6+BQyyC+P1zz9HnHn23asn2OkmDQHG3BIvH9UUvHXVrdX1MaISUeGuwanHyDXMdfJW2TPn5IfUdRAhpOiBULRtesTfzkkvEhnKjlSWqYH9JDOVyv4CvHSY7+pnS+KglXQnqw91ojioyMYgkJXGhoUQyl3C6C53w541KMWmREJnZdOoCphduiGAO4doX88vTXtktSk+x7AApJW1ZjIFyI49yB7ac/GHc5aH4hbkVOuJJDd3nnNleLamixas8kis1vTwVse73VtOtCZFnd7MtncC1xzX9MeLUOdy/kCk2TqX1gDT7P9LIVwsmKbFN5IsxqQ8m5kTvEjZACP6hUv7gLWZe0gg4uSo7v7oYrTipp+SLY90jQT+P7wymsy/H+s4NRICXmma+eS50b3j/Fb0QLpPjvIsk6nZtIrWKtgcpq68GwNVyJos6w6jDze619QVhWUILFVceB6ek4fpP0zOL+vjAPekg1WslS9ryOrcMr3gBJXNNHnDn637cbZz8U4PgDY0mNtY/tdfDqwLCPP1QE748tLCXTEjNAnh/+ZmD+JP14YbVHiKC6mfePfOsVKPoPAuJuyNTIAQsTf5bfMi4qi93jcChVYBcPzxjtMsY3eiE6E+ehTLUT/Xmt4EVFwykE87Re3uhkeFVGcKNXm3VqM4oDo8DdD/VNuRdsWWmLWEmRyDMNhOfGkfUwKDFH7pc8OPXPJeMHvPcP8kqSQNUP2ac6Fk1Ryqs1Wnmb9uL+6R5C5A8Jy/hZ564OrckRx0/jtxXZyQ

In this case I would recommend using discriminate after intro. That's the most adapted (and most basic) tactic here.

But I concur with the previous remark: you can search a bit more before asking questions here. You may also have a look at Stack Overflow where many similar questions are already answered.

In particular, this question was already discussed there: https://stackoverflow.com/questions/42355062/proof-on-booleans-false-true

(I found it again by searching "[coq] false = true" in Stack Overflow search bar.)

Théo

Le lun. 14 mai 2018 à 12:15, Saulo Araujo <saulo2 AT gmail.com> a écrit :
I believe intros. trivial. should do Theo job.

Em seg, 14 de mai de 2018 07:03, Gergely Buday <gbuday AT gmail.com> escreveu:
Hi,

Theorem andb_true_elim2 : forall b c : bool,
  andb b c = true -> c = true.
Proof.
  intros  b c. destruct c.
  - reflexivity.
  - destruct b.
    + simpl.

leads to

1 subgoal
______________________________________(1/1)
false = true -> false = true

which is clearly true but I do not see how this can be resolved with
the tools mentioned in Software Foundations.

I would think of both the premise and the conclusion evaluates to the
builtin_false constant because of the nature of inductive definitions

and then by the usual truth table line

  builtin_false -> builtin_false

should be true.

How can I make this work in Coq?

- Gergely



Archive powered by MHonArc 2.6.18.

Top of Page