coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Ambrus Kaposi <kaposi.ambrus AT gmail.com>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] Induction Principle
- Date: Tue, 12 Jun 2018 16:18:10 +0200
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=kaposi.ambrus AT gmail.com; spf=Pass smtp.mailfrom=kaposi.ambrus AT gmail.com; spf=None smtp.helo=postmaster AT mail-wr0-f173.google.com
- Ironport-phdr: 9a23:r9PdbhyDolYKpinXCy+O+j09IxM/srCxBDY+r6Qd1OMSIJqq85mqBkHD//Il1AaPAd2Graocw8Pt8InYEVQa5piAtH1QOLdtbDQizfssogo7HcSeAlf6JvO5JwYzHcBFSUM3tyrjaRsdF8nxfUDdrWOv5jAOBBr/KRB1JuPoEYLOksi7ze+/94HTbglSmDaxfa55IQmrownWqsQYm5ZpJLwryhvOrHtIeuBWyn1tKFmOgRvy5dq+8YB6/ShItP0v68BPUaPhf6QlVrNYFygpM3o05MLwqxbOSxaE62YGXWUXlhpIBBXF7A3/U5zsvCb2qvZx1S+HNsLxUL40RC+i7791RxD0lCcJOTk58GTNhcxxiqJQvRatqhN7zoLRZoyeKfhwcb7Hfd4CSmVBUMReWSxPDI2/coUBEfYOM+lDoonhvlsDtweyCRWwCO7tzDJDm3/43bc90+QkCQzLwAkgEMkUsHTJt9X+KaIcXvqtzKnP1jXDbu5d1DD+6IfSahAhpuqMXbNqfcXLzEkgDBnFjkiLqYH+MDOV0/4Cs2mf7+Z6Se2vjGsnphh3rzOyyMksjYzJiZgUylDC7Sh5z4c1JcG4SE5metGoCppQtyacOoBrQc0iW3lltDgmxrACo5K2fygHxI46yxLBaPGLaZWE7xDtWeuXPDx2nmhqeKiliBa36UWgyvPzVs2z0FtSqypKiNjMtnQU2x3d8MiLVuJx/km81TuN2Q3f8O5EIUczlarUL54u3KQ8mYYUsUTGBiP2mUP2g7GKdkg85OSk9+Dqbq/lq5KcLYN4lx/yP6c0lsCiA+k1PBACX22B9uS90L3j81f5QLJPjvAukanWqojaJcMApq64GQNayIMj5A2lDze7y9QVhnYHLFdfdxKGi4jlIU3BIPf9DfunmVSjjC9rx+zaPr3mGpjCMn/DkK74cblh705c1RE8wMtE55NUD7EBOOj8VlXwtNzeFB85Mha7z/zpCNVnhcsiXjeEBbbcO6fPu3eJ4PguKq+Cftw7ojH4ftEg7eTzljcakEcaZqjhiZgecHejH7JvJk+DfGHEjdIIEGNMtQ07Gr+5wGaeWCJeMi7hF5k34Ss2Xd73VNaRdsWWmLWEmRyDMNhTb2FCBEqLFC6xJYqBUvYILimVJ504y2BWZf2aU4YkkCqWmkri0bM+d7jb/yQZsdTo090nv7SOxyF3ziR9CoGm60/IT2xwmTlWFTo/3aQ6vlYlj1najvM+jPtfGtheofhOV1ViOA==
On Tue, Jun 12, 2018 at 2:52 PM Carmine Abate
<carmine.abate AT inria.fr>
wrote:
> Formally my question can be formulated as
> " given an inductive type \alpha, (like the one I wrote previously)
> what is its induction principle \alpha_ind?
For this first part of your question, we have a paper describing an
algorithm to generate the types of induction principles for an
inductive type given by its sort(s) and list of constructors.
Ambrus Kaposi and András Kovács, A Syntax for Higher
Inductive-Inductive Types, FSCD 2018
https://akaposi.github.io/hiit.pdf
It works for a general class of inductive types as it includes
inductive-inductive types and higher inductive types.
> and what is a term with type \alpha_ind? "
This is usually done using a general combinator such as fixpoint in
Coq. We haven't done this part yet.
- [Coq-Club] Induction Principle, Carmine Abate, 06/12/2018
- Re: [Coq-Club] Induction Principle, Pierre Courtieu, 06/12/2018
- Re: [Coq-Club] Induction Principle, Carmine Abate, 06/12/2018
- Re: [Coq-Club] Induction Principle, karsar, 06/12/2018
- Re: [Coq-Club] Induction Principle, Carmine Abate, 06/12/2018
- Re: [Coq-Club] Induction Principle, Ambrus Kaposi, 06/12/2018
- Re: [Coq-Club] Induction Principle, karsar, 06/12/2018
- Re: [Coq-Club] Induction Principle, Carmine Abate, 06/12/2018
- Re: [Coq-Club] Induction Principle, Matej Košík, 06/12/2018
- Re: [Coq-Club] Induction Principle, Pierre Courtieu, 06/12/2018
Archive powered by MHonArc 2.6.18.