Skip to Content.
Sympa Menu

coq-club - [Coq-Club] BigOp equality over differing indices

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] BigOp equality over differing indices


Chronological Thread 
  • From: Kiran Corbett Gopinathan <e0427802 AT u.nus.edu>
  • To: "coq-club AT inria.fr" <coq-club AT inria.fr>
  • Subject: [Coq-Club] BigOp equality over differing indices
  • Date: Thu, 28 Nov 2019 12:20:26 +0000
  • Accept-language: en-GB, en-US
  • Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=u.nus.edu; dmarc=pass action=none header.from=u.nus.edu; dkim=pass header.d=u.nus.edu; arc=none
  • Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=LDCE/P5hRSrmTmOJAQnQYUv6/HfeSWByutyUnE7G3wY=; b=RwbWHe5zBwjblWcPCanOje8PxALfcF6U8OU1aH/XtLNq1ppMNqtkjJ0HsqnqULu6+2ywLaaVCACzp4dZWGrznfI8D3LVKwuQHe0XxQ801CaZQDdxhSrpfKeg5w3qYpdN2tRU4Jd2rwINFFJ/3DntR7EsvJHm60UqJfZ8lgNYnCTVUjGO9YPcrhhkbLXzsZ4AfTgo3gFs39AVLFgMPVdYQSOL4NVlOQHiyNfzVRheUxM1dtKh0ryj8txDOPaSc490BsH04weJbRg5BPBS7PEia+ED90936IfUVOiPuGfiV2PK7Cz00eeJ3BPWhv0xD25SWyhlrVAHto6W/of05miHhw==
  • Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=XsYkrIKmaWv7VH6e/gJdUs67QLgToDkF1A5TQfVugDEqEQFs23Aw6jZiIHewXQ9ObjxVeYvZQhkaIuIuxwES4ssOmx/CrtEnRxQWfcPI/+XM5fWmxfaDnHX8MLF1F7tM9Tx70rGT44yIAfIKcjtswGzk29SIlZCEV5dS1RaL06PDiOIEIFrRu3QgTWpBNghgbwdlLMLDOG9dAGBA/4jNE5nZhjoj54xQhz3fO00jKbDaWtxnvrRzrZqzJDKQh410Lp3iheAfCPH9y0059h0dkFJ39K8zZlIf0i1WS2FUJsqiMopS7s1uZnXNT5f1fUYd48m3RDSBGmHR/rtI5SSfJg==
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=e0427802 AT u.nus.edu; spf=Pass smtp.mailfrom=e0427802 AT u.nus.edu; spf=Pass smtp.helo=postmaster AT APC01-PU1-obe.outbound.protection.outlook.com
  • Ironport-phdr: 9a23:nNjeoRSAW+8NoaYlnlVQQW+zgtpsv+yvbD5Q0YIujvd0So/mwa6ybBWN2/xhgRfzUJnB7Loc0qyK6vumADJfqs3c+Fk5M7V0HycfjssXmwFySOWkMmbcaMDQUiohAc5ZX0Vk9XzoeWJcGcL5ekGA6ibqtW1aFRrwLxd6KfroEYDOkcu3y/qy+5rOaAlUmTaxe7x/IAi4oAnLq8UbgIlvJqk/xxbJv3BFZ/lYyWR0KFyJgh3y/N2w/Jlt8yRRv/Iu6ctNWrjkcqo7ULJVEi0oP3g668P3uxbDSxCP5mYHXWUNjhVIGQnF4wrkUZr3ryD3q/By2CiePc3xULA0RTGv5LplRRP0lCsKMSMy/WfKgcJyka1bugqsqRxhzYDJfIGbOvlwfqLBctwVXmdORNpdWzBbD4+gc4cDEuwMNvtYoYnnoFsOqAOzCwytBOP10DBIgGL90LM90+Q7Cg7JwhAgH84Tu3rVq9X1LKYSUeavw6nUzTXMdfVW0ir65YfWbhwsru+AULBzfMbN10UiDB7Fgk+WqYz4JDOZzPoCvHWG7+d5U++klm0pqxlprzWg2ssgkJTFip4Xx1ze6Cl0zpg5Kce8RUJledKoDZVduiOAO4drTM4uXXtktDgnxrEYo5K3YSYHxZo/yx7RdfOKcJSE7xfmWemLITp1inJodbexihuy6kev1+jxW8ep3FlRsyZIl8TAu3IT2BHd7MWMV+Fz8V272TmV0gDe8uFELl4wlarcM5Ms3qQ+m4QPvUjeByP4gkv5gLKPekUj4een9f7rYrL7pp+ALIB0jRz+MqIzlcClGeQ4KA8OX3SF9uugyL3j/Er5QLNQgv0xj6nZrJTaJcMcpq66GQNazoEj6xOnAzen1tQXg2UHIUpKdR6blYTlJk3CLfLiAfuijVmgji1nyvTYMrH5B5XCNHnDkLPvfbZn7E5czRI+ws5D659bFL0MIvH+VlPvuNHDEx81KQq0w/v8CNlnyIwRRH+PDreDMKzOqV+I+v4vI+6UaYAJvzb9MuEp6OLqjX8kglAQZrKp3JsSaHCgBPtqOUSZYXz2gtcAC2gGpAQ+TPa5wGGFBHRYYG/3VKYh7Bk6DpinBMHNXMrl1LeGxWKwGoBcTmFAEFGFV3nyIdaqQfAJPQGTOMZn2hcDT7KsV5Np+ha2tQnz17puKKKA93VE782zjIJd+qvViAp0+DBpWZfOm1qRRn15yztbDwQ927py9BQklgWzlJNgivkdLuR9outTW15jZ4OayfFhTd3+R1CZJ4bbeBOdWtyjRAoJYJc0yt4KbVx6Hoz73A2F2TexRbIZiu7SXcFmwufnx3H0Yv1F5TPG2a0m0wZ0a/NkbTTjvpMmsg/ZCsjOjlmTkLuseeIExinR+WyfzG2I+kZFTAp3VqaDVncaNBLb

Dear Coq Club,

I am working on a few proofs in ssreflect that rely on the bigop library, but have run into a block with regards to proving equality of bigop's when the indices are not equal or bijectively related - specifically, in my case I have a situation in which one summand of one of the summations corresponds to a varying number of summands in the other.

A full example would require too much context, but a simplified form of the problem I'm facing can be captured in the following way:

From mathcomp.ssreflect Require Import ssrnat bigop.

Fixpoint even (n: nat) : bool :=
  match n with
  | 0 => true
  | 1 => false
  | n'.+1 => negb (even n')
  end.
 
Lemma example: forall f, \sum_(0 <= i < 4) (2 * f (even i)) = \sum_(0 <= i < 8) (f (even i)).

Obviously this simple lemma can be proven in a number of ways, but I'm specifically interested in whether I could prove this by somehow relating each summand of the first summation to two in the second? (I've looked through the bigop documentation, but the ones on equality seem to be for the case in which indices have a one to one mapping between them (eq_big, eq_bigr etc.)).


Thank you.
-----
Kiran Gopinathan,
PhD Candidate, NUS,
Singapore




Archive powered by MHonArc 2.6.18.

Top of Page