Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] BigOp equality over differing indices

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] BigOp equality over differing indices


Chronological Thread 
  • From: Emilio Jesús Gallego Arias <e AT x80.org>
  • To: Kiran Corbett Gopinathan <e0427802 AT u.nus.edu>
  • Cc: Laurent Thery <Laurent.Thery AT inria.fr>, "coq-club AT inria.fr" <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] BigOp equality over differing indices
  • Date: Thu, 28 Nov 2019 17:41:57 +0100
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=e AT x80.org; spf=Pass smtp.mailfrom=e AT x80.org; spf=Pass smtp.helo=postmaster AT x80.org
  • Ironport-phdr: 9a23:vPBbRxO+DTio3HvHlEQl6mtUPXoX/o7sNwtQ0KIMzox0Iv78rarrMEGX3/hxlliBBdydt6sfzbOI7OuwBCQp2tWoiDg6aptCVhsI2409vjcLJ4q7M3D9N+PgdCcgHc5PBxdP9nC/NlVJSo6lPwWB6nK94iQPFRrhKAF7Ovr6GpLIj8Swyuu+54Dfbx9HiTagb75+Ngi6oATTu8UZgoZvKrs6xwfUrHdPZ+lY335jK0iJnxb76Mew/Zpj/DpVtvk86cNOUrj0crohQ7BAAzsoL2465MvwtRneVgSP/WcTUn8XkhVTHQfI6gzxU4rrvSv7sup93zSaPdHzQLspVzmu87tnRRn1gyocKTU37H/YhdBxjKJDoRKuuRp/w5LPYIqIMPZyZ77Rcc8GSWZEWMtaSi5PDZ6mb4YXD+QPI/tWr47zp1UArxSwBgejC+zzxTJTmn/6wbc33/g9HQzc3gEtGc8FvnTOrNXyMacfSe+7zKzJzTXHbvNW3i/y5ozWfRA6u+mMRqp/f8vLxkkrEwPKkFqQqYv9MD6JzOQNsnKU7/F9Xu+olWEqsA5wrzuzyss2jYnJnI0Vx0nC+C5kw4g1PcW1RFN4bNOnCpdcqT+WOopsTs8/QWxkpTw2xqAItJKlZCQHy4krywTCZ/GDfIWE+AzvWeSLLTtlhH9oe7SyjAuo/0e60O3zTMy03U5KriVbltnMsWgA1hPQ58SbUPd9+V2h2TmX2wDS7OFLP1w0mLLGJ5MiwbM8jIQfvVrCEyPshUn7jrKael859uWm9ejrerDmqYWdN49whAH+KKMumsmnDOsmKQUPUGuW9fim2L3k5035T61GjucqnanBrJDaOcMbq7alDA9Sy4Yv8gqwDzO70NsDhnQHN1JEeBefj4fzIV3OIfb4De2+g1u2ijtryerGNKX7AprRNnjDjKvhfbFl5k5AyAo808pf5pJPB7AAIfLzX1T+tMbCARMjMgy0xfznCNRn2Y8EV2KPGPzRDKSHkl6S7+RnCO6WboIJpH7SLOAk4ffyjXY/0QsQJfXzgstPMlilWPJ7OAOUbWe60fkbFmJfkw8/SO3tv3+PSqxIUFm7W6Yx6TYMIZinBJyLEo2FkOzZmiChEcsFNSh9FlmQHCKwJM2/UPAWZXfXe5c5y21WZf2aU4YkkCqWmkr/wrtjIPDT/3xKpcK7kt9v6L+KzExgxXlPF82Yllq1YSR0k2cPFm0mjPg5plZymA7ajfpIxsdAHNkW3MtnFx8gPM+O37wiTdfoVVCZcw==
  • Organization: X80 Heavy Industries

Hi Kiran,

Kiran Corbett Gopinathan
<e0427802 AT u.nus.edu>
writes:

> Now, in my case, I can prove there exists a mapping between the
> summands of each summation - for each element in one sum, I can find
> g(i) distinct unique elements in the other sum, but I'm not sure how
> to manipulate the goal such that applying this mapping is possible.

I guess you could take inspiration from `partition_big` or `big_flatten`
as to partition your indexes into what you want, then you can apply the
lemma relating each element with their set in the other side; for example:

Lemma example f :
\sum_(i <- [:: 0; 1; 2; 3]) (2 * f (even i)) =
\sum_(i <- [:: 0; 1; 2; 3; 4; 5; 6; 7]) (f (even i)).
Proof.
pose dflt := reshape [::2;2;2;2] [:: 0; 1; 2; 3; 4; 5; 6; 7].
have -> /= := @big_flatten _ _ addn_monoid _ dflt xpredT.
rewrite (big_nth 0) (big_nth [::]) {}/dflt /=; apply: eq_bigr => i _.

will get you down to the shape:

2 * f (even (nth 0 [:: 0; 1; 2; 3] i)) =
\sum_(j <- nth [::] [:: [:: 0; 1]; [:: 2; 3]; [:: 4; 5]; [:: 6; 7]] i) f
(even j)

which you can prove as a more general lemma.

Kind regards,
E.



Archive powered by MHonArc 2.6.18.

Top of Page