coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Fritjof <fritjof AT uni-bremen.de>
- To: coq-club AT inria.fr
- Subject: [Coq-Club] feed goal into hypothesis
- Date: Mon, 6 Jul 2020 18:19:46 +0200
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=fritjof AT uni-bremen.de; spf=Pass smtp.mailfrom=fritjof AT uni-bremen.de; spf=None smtp.helo=postmaster AT gabriel-vm-2.zfn.uni-bremen.de
- Ironport-phdr: 9a23:B+hr2RHTDaLruiGWNB2p0Z1GYnF86YWxBRYc798ds5kLTJ7zoc2wAkXT6L1XgUPTWs2DsrQY0rSQ6vurADRYqdbZ6TZeKcEKD0dEwewt3CUYSPafDkP6KPO4JwcbJ+9lEGFfwnegLEJOE9z/bVCB6le77DoVBwmtfVEtfre9FYHdldm42P6v8JPPfQpImCC9YbRvJxmqsAndrMYbjZZjJ6or1xfErHREd/lKyW90OFmfmwrw6tqq8JNs7ihdu+gt+9JcXan/Yq81UaFWADM6Pm4v+cblrwPDTQyB5nsdVmUZjB9FCBXb4R/5Q5n8rDL0uvJy1yeGM8L2S6s0WSm54KdwVBDokiYHOCUn/2zRl8d9kbhUoBOlpxx43o7UfISYP+dwc6/BYd8XQ3dKU8BMXCJDH4y8dZMCAeQBM+hGsofzpFQBogejCgS3GOPj1iVFimPq0aEm0eksFxzN0gw6H9IJtXTZtNX7NL0TUeCpzqnIyjvDZO5R1Dfz8ojIcwwhofOLXbJ+asfR1E8vFwLcglqLs4zqITaV2foLs2SB8uVvS/uihmg6oA5+vjah3N0jipXVho0L0FDE8z10zZorKNC8SkN3fdCqHZpMuyyYNYZ7TMMsTmJmtSs7yLALvZ+2cSgExZop2xPSdeKKfoqI7B79VOifITZ1iXJ5db+5mh288lCgx/XhWsS631tGtDdJnsXSunwX1xHf9tKLRuZ/80u52juDyRrf5v9YLU02j6bXNYItz7oqmpYOsknOGin7k1jsgqCMbEUr4O2o5vznYrr4op+cMJd5ig7kPas1gMy/APo3MgwXU2iF/OSwzaPv8Vf4QbVEiP06iLTZsJbbJcgCvaG5GRFa0oM95Ba5FTupzcoXkWEGLFJDZh2Hk5DkN0zALf33F/uznkignClxy/3GIrHtGIjBI3rbnLfkZ7l96kpcyAQpzdBY4pJZEr8BIOjyWk/tttzYCRE5Phepw+bhCdVxz5gRWXiRDa+cLqzSt0WE6f8xLOWUfo8apC79K+Q55/7plXI2hVgdfbCw0ZQLbHC4A+9pLl6CYXvsh9cBCX0FshA/TOzskl2CUCRca2y8X6ImtXkHD9etCp6GTYSwipSA2j26F9tYfDNoEFeJRFnydpmGXPlEPCyII9NjlTIsSL6gDoU72BSjskn2xuw0faLv5iQEuMe7h5BO7OrJmERqrG0mP4Gmy2iIClpMsCYNTj4y0rp4pBUgmEqF0O1ymfFdGNoV6/4bC15nZ66Z9PRzDpXJYiyEftqNTw38ENqvCyswQ9Z03dpLOQBvFdPkkxbCmiCwDroYkfqHCc5sq/6O7z3KP894jk3++uw5lVB/H5lSM2zjjLRy8gXVQYLEwR2U
Hi,
I have the following theorem:
fun1 a = a' /\ fun2 b = b' <-> fun (x,y,z) = (x',y',z').
fun1 and fun2 are called inside the function fun:
fun(x,y,z)
match fun1 a with
| a' => match fun2 b with
| b' => (x',y',z') (* these values are calculated somehow *)
| bb' =>
| aa' => ...
end
I can show the following: fun1 a = a' /\ fun2 b = b' -> fun (x,y,z) =
(x',y',z'). (the first part)
But not the second one: fun (x,y,z) = (x',y',z') -> fun1 a = a' /\ fun2 b =
b'.
I didn't find a way to feed the left side of the implication into the
hypothesis: fun (x,y,z) = (x',y',z').
Does someone has a hint for me how to solve this?
Best regards,
--f.
- [Coq-Club] feed goal into hypothesis, Fritjof, 07/06/2020
- Re: [Coq-Club] feed goal into hypothesis, Pierre Courtieu, 07/06/2020
- Re: [Coq-Club] feed goal into hypothesis, jonikelee AT gmail.com, 07/06/2020
- Re: [Coq-Club] feed goal into hypothesis, Qinshi Wang, 07/06/2020
Archive powered by MHonArc 2.6.19+.