coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Qinshi Wang <qinshiw AT cs.princeton.edu>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] feed goal into hypothesis
- Date: Tue, 7 Jul 2020 01:04:09 +0800
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=qinshiw AT cs.princeton.edu; spf=Pass smtp.mailfrom=qinshiw AT cs.princeton.edu; spf=Pass smtp.helo=postmaster AT yellowcard.cs.princeton.edu
- Ironport-phdr: 9a23:b3P1khGVr+mCcWQMzGBxcJ1GYnF86YWxBRYc798ds5kLTJ7zr8qwAkXT6L1XgUPTWs2DsrQY0rSQ6vurADRQqdbZ6TZeKcEKD0dEwewt3CUYSPafDkP6KPO4JwcbJ+9lEGFfwnegLEJOE9z/bVCB6le77DoVBwmtfVEtfre9FYHdldm42P6v8JPPfQpImCC9YbRvJxmqsAndrMYbjZZjJ6or1xfErHREd/lKyW5rOFmfmwrw6tqq8JNs7ihdu+gt+9JcXan/Yq81UaFWADM6Pm4v+cblrwPDTQyB5nsdVmUZjB9FCBXb4R/5Q5n8rDL0uvJy1yeGM8L2S6s0WSm54KdwVBDokiYHOCUn/2zRl8d9kbhUoBOlpxx43o7UfISYP+dwc6/BYd8XQ3dKU8BMXCJDH4y8dZMCAOUPPelar4fzqVgAowagCwawH+7g0CNEi2Xs0KEmz+gsEwfL1xEgEdIUt3TUqc34OrwTUeCz16nIzTTDZO5W1jjn7ojIfQ0qrPaVXbJxd8rR0kkvFwLLj1iLtYPlJCmZ1vwXs2ia6epvSfygi3IgqwF3uDSg2NojipTQi48T11vL+jl3zpwvKt2kVE50f8SkEJ1Iui+VKYZ6XscvTWF0tSg1xLALt4K2cicJxZon2xLSdeKLf5SL7x/gVuucPyt1inxqdb++mxq+7UeuxvDiW8Wp0VtHqDdOnNrUtn0VyhDf9MuKRuFg8ku8xzqDzR3f5+9FLEwulKfWKoYtzqAsmpcXq0jOHS/7lF/ogKOIa0ko4Oil5uvhb777vJGTLZV0hRv7Mqk2msywH+A4Mg8WUmmb5+u80Lnj/Ur3QbpWlPI2iLTWvIrGKsQAvKK5GxVV0ocl6xmjETimzNMYnX8dIF1bZR2HkpDlO1DIIP/mEfeym0mgnCloyvzcI7HtH4vBImLenLrvfLtx8U9RxQsrwdBa/Z1UC7UBIPzpWk/2sdzVFgY5Mw2yw+b8CNV9140fVHmTDa+CKq/SqUWI5uMpI+aQeoAVpDH9K/4/6/HwkHA5hEcRfbO10psPdHC4AvNmLl2Fbnrrm9cNCHsFvg4jTOPxk1CCSj5SZ3OqX60m/D07CYSmDZ3CRo+3mrCB0j27TdVqYTVNDUnJGnP1fa2FXe0NYWScOJxPiDsBAIGgTZQh1FmRvQn1g+5+L+zP+iwHnZn4ksBv5uvYmA0183p5A9nLgDLFdH19gm5dH2x+56t4u0Eokg7fg5g9uORREJlo390MSh0zbM6OxPc8E8rzXAnMYtCPDluqX4f+WGBjfpcK29YLJn1FNZCnhxHH0TCtBuZFxbeQQoQu86TX0mT2IYBwx2uUjfB83WljedNGMCidvoA69wXXANSYwVSUk6Ktaq8VxiKL/3zF1XCPukpVTAl2F6jJQCJGaw==
Dear Fritjof,
It seems what you are trying to prove is not provable. Given (fun (x, y, z) = (x', y', z')), it is still possible that (x', y', z') comes from other branches, e.g. aa' or bb'. You must show these branches are not possible to give (x', y', z').
Best,
Qinshi
On Tue, Jul 7, 2020 at 12:19 AM Fritjof <fritjof AT uni-bremen.de> wrote:
Hi,
I have the following theorem:
fun1 a = a' /\ fun2 b = b' <-> fun (x,y,z) = (x',y',z').
fun1 and fun2 are called inside the function fun:
fun(x,y,z)
match fun1 a with
| a' => match fun2 b with
| b' => (x',y',z') (* these values are calculated somehow *)
| bb' =>
| aa' => ...
end
I can show the following: fun1 a = a' /\ fun2 b = b' -> fun (x,y,z) = (x',y',z'). (the first part)
But not the second one: fun (x,y,z) = (x',y',z') -> fun1 a = a' /\ fun2 b = b'.
I didn't find a way to feed the left side of the implication into the hypothesis: fun (x,y,z) = (x',y',z').
Does someone has a hint for me how to solve this?
Best regards,
--f.
- [Coq-Club] feed goal into hypothesis, Fritjof, 07/06/2020
- Re: [Coq-Club] feed goal into hypothesis, Pierre Courtieu, 07/06/2020
- Re: [Coq-Club] feed goal into hypothesis, jonikelee AT gmail.com, 07/06/2020
- Re: [Coq-Club] feed goal into hypothesis, Qinshi Wang, 07/06/2020
Archive powered by MHonArc 2.6.19+.