Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] feed goal into hypothesis

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] feed goal into hypothesis


Chronological Thread 
  • From: Pierre Courtieu <pierre.courtieu AT gmail.com>
  • To: Coq Club <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] feed goal into hypothesis
  • Date: Mon, 6 Jul 2020 18:35:41 +0200
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=pierre.courtieu AT gmail.com; spf=Pass smtp.mailfrom=pierre.courtieu AT gmail.com; spf=None smtp.helo=postmaster AT mail-io1-f46.google.com
  • Ironport-phdr: 9a23:lcUychSA4C+40NqTG00if0K1ytpsv+yvbD5Q0YIujvd0So/mwa6zZRON2/xhgRfzUJnB7Loc0qyK6v6mADdLuM7b+DBaKdoQDkJD0Z1X1yUbQ+e9QXXhK/DrayFoVO9jb3RCu0+BDE5OBczlbEfTqHDhpRQbGxH4KBYnbr+tQt2agMu4zf299IPOaAtUmjW9falyLBKrpgnNq8Uam4RvJrswxxfTv3dFdetayX50KV6Ngh3w4tu88IN5/ylfpv4s99RMXbnmc6g9ULdVECkoP2cp6cPxqBLNVxGP5nwSUmUXlhpHHQ3I5wzkU5nyryX3qPNz1DGVMsPqQ780Xy+i77pwRx/zlCgHLT85/3rJhcF2kalWvQiupx17w47TfYGVKP9zdb7TcN8GWWZMWNtaWjdfCY2gcYQAE+sBPf5Zr4bjoVsOsQC+DhSoCO/21zNEmmP60ag83u88Ew/JwRYgEsoBv3Tartr7NKkcX+OowqfW0TrNYOhb2Svk6IXSbhwtve2AULB2fMHMyUcvDQTFjlCIpIL/PjOayP4Ns3KF4OF9S++vjHMnqxttojiu2Mgsl5TCi4UNylDF6yp52pw1KsOiREFnZt6kDYFQtz2bN4RoX8MvWG5ouCMgxb0HvZ63ZjQFyJMixxPGbfGMboeH7A75WumLPTd4mGxqeKi5hxuq70Ws1O3yW8mp3VpWsidLndnBu20R2hHS9MWKRPRw8Eij1DqT1g3e7u9KLV4pmafZJZAs37E+mJoOvUneHSL7l0P7h7KVeEU84uWk9fjrb7H8qpKfN4J4kBzyP6Uvl8ClDuk1Mw4DVHWB9+umzr3s50j5Ta1KjvIolqnZt4jXJcEBqa64Bw9Zy4cj6xGiAzu/3tQVkngKIEhKeBKAiIjpNFXOL+7iAfijhFSslS9nx/HAPrL/HpXANmbPnKvlcLpn6ENRyBA/wc1e6p9VEL0ML/P+Vlf0tNPCDx85NwK0w/zgCNV4zo4eQWOPDbGDMKPIr1CE/P4gI+6RZI8PpDb9KuYq5+P1gH82nF8SZ6ip3Z8NZH+kGfRmJl2VYWDwjdcZDWcKog0+QfT2h12FSD5ffmq9X6Yh5j4gE4+mFofCRoW1gLObxiu7H5tWZnpHCl+WC3voeZ+ECL8wb3e5JdYpuTgZX/D1QIg4kBqqqQXSyrx9L+OS9DdO5rz5090g3+zejws/vRdzEt6B0myQBzVsn24SXTJw16diu1B8x0qr3q1xgvgeHttWsaAaGjwmPILRmrQpQ+v5XRjMK5LQEA7/HoeWRAopR9d0+OcgJl5nEoz73B/G1iuuRbQSku7TXcFmwufnx3H0Yv1F5TPG2a0m1QR0R8JOMSingfc6+VSNQYHOlEqdmuChcqFOhHecplfG9nKHuQRjaCA1VKzEWX4FYU6P9Ib240rDS/mlDrF1awY=

Hi,
you need to be more precise, see below:

Le lun. 6 juil. 2020 à 18:20, Fritjof <fritjof AT uni-bremen.de> a écrit :
>
> Hi,
>
> I have the following theorem:
> fun1 a = a' /\ fun2 b = b' <-> fun (x,y,z) = (x',y',z').

What does "I have" mean? You have it proved? Or You want to prove it?

> fun1 and fun2 are called inside the function fun:
> fun(x,y,z)
> match fun1 a with
> | a' => match fun2 b with
> | b' => (x',y',z') (* these values are calculated somehow *)
> | bb' =>
> | aa' => ...
> end

this is not a valid coq definition. Do you mean this?

Definition fun (x,y,z) :=
match fun1 a with
| a' => match fun2 b with
| b' => (x',y',z') (* these values are calculated somehow *)
| bb' =>
| aa' => ...
end.

1) Note that "fun" is a reserved keyword so this is probably not
accepted by coq.
2) I don't see why the "<-" of your theorem is true. It amounts to
proving that fun is injective probably. So again: is the theorem
proved or are you trying to prove it. In the latter case for what
reason would it be true from right to left?

>
> I can show the following: fun1 a = a' /\ fun2 b = b' -> fun (x,y,z) =
> (x',y',z'). (the first part)
> But not the second one: fun (x,y,z) = (x',y',z') -> fun1 a = a' /\ fun2 b =
> b'.
> I didn't find a way to feed the left side of the implication into the
> hypothesis: fun (x,y,z) = (x',y',z').

I think you are trying to prove something either false or quite non trivial.

Best

P
> Does someone has a hint for me how to solve this?
>
> Best regards,
> --f.



Archive powered by MHonArc 2.6.19+.

Top of Page