Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Tacit implications in Goedel's theorems II – Re: True arithmetical proposition not provable

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Tacit implications in Goedel's theorems II – Re: True arithmetical proposition not provable


Chronological Thread 
  • From: Pierre Courtieu <Pierre.Courtieu AT cnam.fr>
  • To: Coq Club <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] Tacit implications in Goedel's theorems II – Re: True arithmetical proposition not provable
  • Date: Thu, 24 Jun 2021 10:01:01 +0200
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=Pierre.Courtieu AT cnam.fr; spf=Pass smtp.mailfrom=pierre.courtieu AT gmail.com; spf=None smtp.helo=postmaster AT mail-io1-f41.google.com
  • Ironport-hdrordr: A9a23:3rutkKzRIyrb/uMuo8iGKrPwSb1zdoMgy1knxilNoH1uA6+lfq+V8MjzuSWbtN9zYhEdcK67UpVoKEm0nfVICOIqXItKMjOIhIJLFuxf0bc=
  • Ironport-phdr: A9a23:FCkeZxSU5MCjR48ZusxAN9RDxtpsonOfAWYlg6HPa5pwe6iut67vIFbYra00ygOQDMOAt64P1LeempujcFRI2YyGvnEGfc4EfD4+ouJSoTYdBtWYA1bwNv/gYn9yNs1DUFh44yPzahANS47xaFLIv3K98yMZFAnhOgppPOT1HZPZg9iq2+yo9JDffgFFiCCzbL59Ixi6ogfcu8kLioZ+N6g9zQfErGFVcOpM32NoIlyTnxf45siu+ZNo7jpdtfE8+cNeSKv2Z6s3Q6BWAzQgKGA1+dbktQLfQguV53sTSXsZnxxVCAXY9h76X5Pxsizntuph3SSRIMP7QawoVTmk8qxmUwHjhjsZODEl8WHXks1wg7xdoBK9vBx03orYbJiIOPZiYq/ReNUXTndDUMlMTSxMGoyzb4UNAOQBM+hWrJTzqUUSohWxHgSsGPrvxyVUinPqwaE30eIsGhzG0gw6GNIOtWzZos/0NKgMS+C11rfHxijdYvNRxDf98pTIchE/rvGRQLl9dtDfyUgxGAPflFWft5bpMi2S1uQQqWib8+tgWvyyi2M8tw5xpCKgxsI2honHnIIY01bJ/jh2z4gpP9O3UlJ7YcK6H5tKsSGXL4h7T8csTmxopSs317IItYCncSUOyZkq2wPSZfOIfYWV4x/uSuafLSl2iX54Zr6ygwu+/0iuxOPzWMe4zlJHoyRDn9LRtX4NzwTe5tabRvZ55Eus2jaC2xrO5uxFIE04j6XWJ4Mnz7UtjJQcq17DETXzmEjujK+ZaEEk+u+w5uTieLrmp5ucO5Z1igH5L6gig8K/DOslPgQUUGib/uO81LLn/ULnWrlFkvo2kqzBvJDbI8QUuLK5DhdL3oo/7xuzFTSr3dQCkXUaLV9IeQiLgof0N13WJfD3F/a/g1CikDdxwPDGO6XsAo3MLnfdirfhZ6hy51RAxwo00NBf/Y5UCrAfL/LuQULxu9nYAQU4Mwyw2eroFNJ91oYGVWKVHqCZKL/SsUOP5u83P+aMY5YVtC/hJPgh+v7hlmQ0mUQdfKmsxZsYcmq0HvVgI0WDYHrjmM0NEWkQvll2cOu/o1qbGRVXenz6C6k7/3QwDJ+sJYbFXIGkxrKbinSVBJpTM1hHB0qWHD/DcJieR/YBdWrGGs5siCYJE5OmVpU91ByznAT8wr8hIPCCqX5Qjo7qyNUgv76brho17zEhSp3FiwlloEl7m2oJQ3k926Ut+CSVL3+I16F9xfJCR4Q7DxJhVw47MdvdyLU/BYyrHA3GediNRRCtRdD0WVkM

Le jeu. 24 juin 2021 à 04:49, Marco Servetto
<marco.servetto AT gmail.com> a écrit :
>
> I'm more and more confused, but now I have an example that may help to
> clarify (and ends up hitting non-standard numbers too)
> -One of the typical examples for Propositions that may not be provable
> is termination of programs:
> -lets have "halt(p) = n" a partial function from program->nat, that returns
> the
> number of steps the program p takes to terminate.
> - For all terminating programs, their execution trace is a valid and
> finite 'proof of termination'
> - For some programs, there is no proof of neither
> Exists n: halt(p)=n nor not Exists n: halt(p)=n
> -Those programs do not terminate, otherwise we would have a
> termination proof using their execution trace.
>
> -Question1: Where is the 'model' that defines 'truth' in my reasoning
> above?

I can't tell but it is for sure the one you are in when you write
sentences like: "For some programs, there is no proof of bla". This
english statement corresponds to some formula (en existential one
here) to be interpreted in some theory, where there is a notion of "X
being a proof of Y" in ANOTHER (less expressive) theory.

My two cents.

P.



Archive powered by MHonArc 2.6.19+.

Top of Page