Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Proper subset relation well-founded?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Proper subset relation well-founded?


Chronological Thread 
  • From: mukesh tiwari <mukeshtiwari.iiitm AT gmail.com>
  • To: coq-club AT inria.fr
  • Subject: [Coq-Club] Proper subset relation well-founded?
  • Date: Mon, 5 Dec 2022 16:50:10 +1100
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=mukeshtiwari.iiitm AT gmail.com; spf=Pass smtp.mailfrom=mukeshtiwari.iiitm AT gmail.com; spf=None smtp.helo=postmaster AT mail-lf1-f46.google.com
  • Ironport-data: A9a23:+BWol6JFCgRkukGXFE+RD5ElxSXFcZb7ZxGr2PjKsXjdYENS1zYAz jFOX2CEPP2PN2WhKY90PYy29h8D6JWAzNBrQVQd+CA2RRqmi+KVXIXDdh+Y0wC6d5CYEho/t 63yTvGacajYm1eF/k/F3oDJ9CU6j+fRLlbFILasEjhrQgN5QzsWhxtmmuoo6qZlmtHR7zml4 LsemOWCfg77s9JIGjhMsfja8ksz5K6aVA4w5zTSW9gb5DcyqFFOVPrzFYnpR1PkT49dGPKNR uqr5NlVKUuEl/uFIorNfofTKiXmcJaKVeS9oiY+t5yZv/R3jndaPpDXmxYrQRw/Zz2hx7idw TjW3HC6YV9B0qbkwIzxX/TEes3X0GIvFLLveBCCXcKvI0LucXbs+MxKDRsNGoQk3u9ZJn5c/ Kw0J2VYBvyDr7reLLOTT+BtgoEnIpCuMt9B/H5nyj7dALAtRpWrr6fiv4cJmmdtwJkQQrCCO aL1ahI3BPjESxhSOVoMCI4/g+6yhz/+cjxErXqaoKM25y7YywkZPL3FbIOLK4PWGp09ckCwq H+WxDTECU8hKNnB5AKZ6XOGlsX/pHauMG4VPOTgqqQCbEeo7mcUEVgdUUaxieKoj1a3HdNZM U0dvCQ0xZXe72SuR9j5Ghm2+TuK4kBaVN1XHOk3rgqKz8I4/jp1GEAGQz56Ufgn7vQRTAAO3 3GugMHgVRBg5ej9pW2myp+Yqja7OC4wJGAEZDMZQQZt3zUFiNFs5v4oZoY8eJNZnuEZChmrn G/X9HlWa6E7yJ9Uh//irDgrlhr1/sCRJjPZ8Dk7SY5M0++UTIusZojt7VaCqPgccsCWSV6Ou HVCkM+bhAzvMX1vvH3RKAnuNOvyjxpgDNE6qQA0d3XG32rxk0NPhagKvFlDyL5Ba67ogwPBb k7Joh9275ROJnasZqIfS9vvVJxzkvi+To67BqC8gj9yjn5ZJF/vEMZGNR744owRuBVEfVwXY 8bFL573UR7294w3k2PvLwvi7VPb7nlmmTm7qWHTwBOg3r6TDEN5up9UWGZimtsRtfveyC2Mq 4g3H5LTl313DbOjCgGKrtZ7BQ5QcRATW8utw+QJLb7rH+aTMDt+YxMn6ehxJdINcmU8vrugw 0xRrWcDkQKn2SGbdlzQAp2hAZu2NatCQbsAFXREFT6VN7ILOO5DNY9OLMNlTqpt7+F50/9/Q t8MfsjKULwFSS3K935ZJdPxpZBrPkbjzw+fHTuXUB5mdb5ZRivN5oDFeCnr/3IwFSaZj5Y1j ICh8QL5eqA9YTpeIvzYU9+R6m+gnGM8nbtyVnTYI9MId0TL9pNrGhPLjfQ2Ap8tLEzDzwSFy wy5MAc8mtiVhY5o9tOT1KaOgLq0IrEvAmtbAGjpwrKkPgbK/meY4NFhUcTZWRv/RW/L6KGZS uEN9M7FMdoDh0Rvn7tnNrRWkZIF+NrkooFFwjReHHnka0qhDpViKCKk2fZjm7JsxLgDnyeLQ WOKp8dnPIuWNPPfEFI+IBQvasKB36o2nhjQ9fEEH1Xo1hRo/baoUVRgADfUsXZzdIBKCYICx fstnOU06Abl0xojDYugvxBurm+JKiQNbrUjupQkG7TUswsMyG8TRbzHCyTz3oODVMUUDGkuP Q2vpfTjg5Zy+xP8VkQdRFn388hTv5AsgCxx7UQjIg2Jk+XVh/Vs0xx29y82fztvzR5G8rxSP 2R3BnJxPoGL2Sliv+lYfmWWAwoaLgaoyk/w7FoolWPiUEijUFLWHlA9Ieqg+EM48XpWWzpmo JW07XnDaimzWu3cxQ4wVlxBh925aOdu5yvQnMyDNOaULakQODbKrPenWjsVlkHBH8g0unzim cBr2+RVMojQKi8apvwAObmwjLg/ZkiNGz1ffKtH4qgMIGD7fQOy0xioL2SaWJtEB97OwH+CJ /1eHOB9fDXg63/WtREeP7AGHJFslv1w5NYiRKLiFVRbj5Sh9AhWoLDi3Qmgol9zWNh/s9cPG qWIfRK4L2Ggr391mWjMkcp6BlSFceQ0PDPb4uTk39gKRrQisf5te34cyrGbnWuYGyo58gO2v DHsXb73zetj+941n4LTDbhyXVSoCNLsVdan9BK4nMROYOjub+bPlVIxgXv2MztGOYA+X4xMq o2Ml9rszWX5s60TQUmAv7W8T4xy+tSVcM9MF8DGPF12vHClZpf3wh0h/2uYF8R4oOlF7JP6e zriOdqCS9EFfvx8mlhHYDd6ODQAAf3VaqzAm3uMn86UAEJA7T2dfcKVzl63X2R1bSRSBobfD DXzsPOQ5tx1ioRAKRsHJvN+Ca9DP17Rdvo6RuL1qAWnIDGksnGatpvmsCgQ2zXBJ32HMcT9u Jz7H0m0MFz4vazT19hWvrBjphBdXj43neA0eVlb4NJszSyzCGkdN+kGLJEaEddunzfv0I3jL iT4BIf45f4RgRwfGfk93DjiYutbLukHO9O8IjJwuk3INWG5A4SPBLYn/SBli5uzlv0P08n/Q ezyOFWpVvRy/n2tbekW7/2/x+xgw5s2A1oWrFvlnZWa7wk2WN03Ob8IIOaJfSPCGsDJ0k7MI ADZgIyCrF6TESbMLCqrR5KZ9Nz1ct8iI/XEoBpjGOrihrg=
  • Ironport-hdrordr: A9a23:t6QWHKGtLtGFLJCXpLqE5ceALOsnbusQ8zAXPiFKOHtom6mj/f xG885rtiMc5AxwZJhCo7G90cu7MBHhHPdOiOF7AV7IZniChILHFvAH0WIg+VHd8u/Fm9K1GZ 0OT0G2MrPNMWQ=
  • Ironport-phdr: A9a23:Jfy1SBWOuiwqSZ2MFFSHNbP8I8vV8KxuXzF92vMcY1JmTK2v8tzYM VDF4r011RmVB9idsqkP27qe8/i5HzBavdDZ6DFKWacPfiFGoP1epxYnDs+BBB+zB9/RRAt+I v5/UkR49WqwK0lfFZW2TVTTpnqv8WxaQU2nZkJ6KevvB4Hdkdm82fys9J3PeQVIgye2ba9vI BmsogjdqMkbjZF/Jqs/xRfEoXhFcPlSyW90OF6fhRnx6tm/8ZJ57yhcp/ct/NNcXKvneKg1U bNXADM6Pm4v+cblrwPDTQyB5nsdVmUZjB9FCBXb4R/5Q5n8rDL0uvJy1yeGM8L2S6s0WSm54 KdwVBDokiYHOCUn/2zRl8d9kbhUoBOlpxx43o7UfISYP+dwc6/BYd8XQ3dKU8BMXCJDH4y8d ZMCAOUBM+hWrIfzukUAogelCAa2GO/i0CVFimPq0aA41ekqDAHI3BYnH9ILqHnUqcj1NKQMX uCuzKnD0CnDb/JY2Djn8ojIcw0qrPaJXbJtcsre11IvFwPZjlWRp43qJSmV1uUXv2ia7upgV P6vi2s8pgF+pzig3MYsio3Tio0JzVDE8Dx0zYAoLtK3VEB1e8SrEIdMty6ELYt2RNsvTn9rt Ssm17ELu5G2cSgExpkmxhPTdf2KfoyV7x/9VeufITl1iG5kdb+imRq//kytx/PiW8WpzlpHo CVLnsTMuH0Lyhfd5M+HSv5n8Ueg3zaCzw/T6uBYIUA0iKrUMIQtzaI3lpoWt0nIAyz4mF3ug aOIakkp/vKk5ufnb7n8u5ORNo15hhvxP6kvnMG0HP42PRIUX2eB/OSxzL3j8lP9QLVNlvA2l 7PWsJHeJcgCoq65DRJZ3p8t6xuwDjqqytsYnX4ALFJKfBKIkZLlNE3JIPD9Ffu/glKsnyl3x /3eILHtHpHAImLAnbrhZ7px9k9RxQgpwd1Q5p9YErQBL+jyWk/1utzYFBg5MwmszubiFdV91 Z0RWXmPAq+FMaPTv0WH5vguI+WWZY8VuTf9K+Qg5/P1gn85nEUSfait3ZcNdH+4GfFmL12fY XX3mtgBC3sFvhIiTOz2j12PSSNfa26oX60g/jE7FJ6mDYDbS4+xh7yBxT63EYFSZmBbEV+BC mzodoWBW/cUci2eOM5hkjoeVbigUYAtzx+utBWpg4Zge+HT42gTsY/p/Nlz/eza0x8ophJuC MHI1nyOQnp01n8JWDYs3egrpFF+x0yDzalniuZZU91S5u9Megg/PJ/Yied9DoahCUr6Yt6VR QP+EZ2dCjYrQ4dpqzdvS0N0GtH5ywvGwzLvGLgN0bqCGJ0z9KvYmXn3Pcd0jXjch+E6l1dzZ MxJOCW9g7JnsRDJDtvMjkaUjKa2dLsVxi+L9WaC0W+ms0RRUQo2WqLADjgEfkWDld3i/QvZS qO2T7EuMw9P08mHf65XadDyjUlHW/75OZLfYmOtnk+/AB+JwvWHa4+5M34F0nD7D04J2xsW4 W7ANQU6AXK5pHnCCTV1CV/1S0bl8O07rH3iC0FokUeFaEpu07fz8RkQ7RCFY9UU2L9M+CIoq jEvWU24w8qTEN2Y4QxoYKRbZ9o5plZBz2PQ8QJnbNSmKOh5i1gSfh4S3Qum3ghrCohGjckhr W87hAt0J6WC1VpddjSelZnuM7zTI2P28VihcanTkl3Z1d+X/O8I5pFa4x3moQKkDUo+8mpuy dgT0nqd+pDiAw8bUJa3WUEytlB7q7zcfigh9tbMz3Q/VMv8+jTG2t8vGK4k0kP6J4YZYP7CT VGtVZFEVK3MYKQwllOkbwwJJrVX/a8wZIa9cueenbWsJKBmlS6nimJO5MZ81FiN/mxyUL2tv d5NzveG0w+ATzq5gk2mt5W9nJ1HaCoSAmugwDLlQo9QZ7F3VYkOAGaqZcaww58t4vylE24d7 1OlC14cjYWsZBmfdFzh3BJZz0VRoH2mhS6QwDl9kjVvpa2aln+roayqZF8MPWhFQ3NnhFHnL N2vjtwUa0OvahAgiBqv4UuSK7FznK1kNCGTRE5Je3OzNGR+Su6rsaLEZcdT6ZQuuCERUeKmY FncRKSv6xcd1iriGSNZylVZP3mvp5b0hBxmiX2UNnc1rXvYZcRYyhLW5diaTvlUljYLXyh3j zDLC0P0ZYH4u4XJ0c6d7abiCSqoTfgxOWHzwJmFtTen6GEiGhC5k/2p25XmHQU8zS7nxoxvX CTMogz7Z9qj3KC7POR7O0hwUQWkuowqR8cnzNR22M9DvBpSzo+Y9ncGj2rpZNBS2KalKWEIW SZO2NnNpg7sxExkKHuNgYP/THSUhMV7NLzYKisb3Dww68dSBeKa9rtByGFwv1m1tgLNYOd0h DZbyPov9HsyjOQAuQ5rxSKYSON3fwEQLWn3mhKE4srr5qBKZ2u0caSxy0NknJagDbCepylTX X/4ftEpGio6vaAdeBrclXb07I/jYtzZa9ke4waVnxn3hO9QMJstl/AOiHkvKSfnsHYi0eJ+k Q120MTwot2cM2s0tvHcYFYQJnjvasgU4D2okatOgpPcwdW0Bps4UjQTAMmzELTxQWpU76i4c V7JSmF0q2/HS+SDW1XEswE/8SqJS9fyZhT1bDEY1YkwGkfbfRQFxlhSBHJgxtY4Dlz4mpKnK hsooGBJoAa/8EMEy/o0ZUalFD6D4l75MHFsD8HPSXgepgBauxWKbYrHtL81R2cAucT/5A2Vd j7CP1QOVD5WHBzCXxe5Z/Gv/YWSqrfDQLPvc72WJ+3J8LI7Nb/AxIrzgNE+rnDca4PWZCkkV 7pihQJCRSwrQZ2H3WhfDXVGzWSVKJfK7Bakpn8t9575qq+6Hlm1o9PIUuo3U50n7Rmyhe3r2 /e4oiF/JH4Y05oNwSSN070DxBsJjDkocTCxELMGvCqLTaTKm6YRAQRJIyV0fNBF6a4xxGwvc YbSl8/127hkj/U0F0YNVFrvndusbNALJGf1PU3OBUKCPrCLbTPRxMS/baS5QLxWxOJa0n/48 S6cCFPmNy+fmiPBUhmuNaRIgnjeMkAA/o66dRlpBC7oS9enIhy3PdlrjCEnlL05gnSZUAxUe TN4ck5LsviR9XYC2qQ5SzEHtyQ6a7XayEP7p6HCJ50bsOVmGHFxnuNeuzEhzqdNqTpDXLpzk TfTqdhnpxenlPOOw3xpSkkryH4DiYSVsEFlIaic+INHXCOO+Q8O4H6QFxUVrsFkTNzuurxV4 tfKnaP3bjxF9piHmKlUT9iRM8+BPHc7ZFDxHyXICQIeUTOxHWTWhkgYlP/Ls3PJ8N41rZ/jn JdIQbheHg9QdLtSGgFuG9oMJ41yVzUvnOuAjcIG0nG5qQHYWMRQup2vvhO6BPzuLHOdg+ABa UdWh7z/KosXO8vw3EkwMjGSeazFHkPRWZZGpSgzNmfcT21C9XF/Sis43Ee3M2uQ
  • Ironport-sdr: 638d869f_9Dlkw+tzIVJlEKeev/3EiKJUC6QmcxVkDqRXQFdYDiSnFoZ ngl+ualZsEzJE9/4j0zlLPXAUeIOna18Qc9bSqw==

Hi everyone,

Is this (proper) subset relation is well-founded? Based on my understand, I believe the answer is no (and maybe we need more assumptions), but I am happy be proven otherwise.  You can see the complete code [1].


Definition finset (A : Type) := list A.
(* proper subset *)
Definition subset {A : Type} (xs ys : finset A) : Prop :=
 (∀ x, In x xs -> In x ys) ∧
 (List.length xs < List.length ys). (* for proper subset *)


Lemma well_founded_subset {A : Type} : 
(∀ x y : A, {x = y} + {x ≠ y}) -> 
well_founded (@subset A).
Proof.
  intro Hdec.
  unfold well_founded.
  induction a as [| ah al Iha].
  + econstructor;
    intros ? [Hyl Hyr].
    simpl in Hyr; nia.
  + 
    (* Induction Hypothesis peeling *)
    pose proof (Acc_inv  Iha) as Ha.  
    (* transitivity *)
    econstructor;
    intros xt Hx.
    (* I can unfold one more time, but 
      will I get anything meaningful? *)
    econstructor;
    intros yt Hy.
    (* case analysis *)
    destruct (List.In_dec Hdec ah yt) as [Hb | Hb].
    ++  
      (* In ah yt *)
      pose proof (subset_member _ _ _ Hb Hy) as Hc.
    (* 
      ah ∈ xs so I can write 
      xs = xsl ++ [ah] ++ xsr.
      From Hx : subset xt (ah :: al)
      I can infer: subset (xsl ++ xsr) al.
      But there is no way I can establish:
      subset yt (xsl ++ xsr) for transitive and 
      induction hypothesis to work.

      My conclusion is: it's not provable but 
      happy to be proven wrong.

      If it's not provable, can we make subset relation 
      well founded? 

    *)
    admit.
  ++ admit.
Admitted.

Best, 
Mukesh


[1] 
https://gist.github.com/mukeshtiwari/ecdebdae6f28ddf4b231d160b16de37d



Archive powered by MHonArc 2.6.19+.

Top of Page