Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Proper subset relation well-founded?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Proper subset relation well-founded?


Chronological Thread 
  • From: mukesh tiwari <mukeshtiwari.iiitm AT gmail.com>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Proper subset relation well-founded?
  • Date: Mon, 5 Dec 2022 18:24:55 +1100
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=mukeshtiwari.iiitm AT gmail.com; spf=Pass smtp.mailfrom=mukeshtiwari.iiitm AT gmail.com; spf=None smtp.helo=postmaster AT mail-lf1-f47.google.com
  • Ironport-data: A9a23:B5OJUqODjbuijJzvrR17k8FynXyQoLVcMsEvi/4bfWQNrUp03jJVz GEaXmzQaP7YYjH3KNskbIjk90JSsZeEm4JgSXM5pCpnJ55ogZqcVI7Bdi8cHAvLc5adFBo/h yk6QoOdRCzhZiaE/n9BCpC48T8mk/jgqoPUUIbsIjp2SRJvVBAvgBdin/9RqoNziLBVOSvU0 T/Ji5CZaQHNNwJcaDpOsfvZ8E835pwehRtB1rAATaAT1LPhvyJNZH4vDfnZB2f1RIBSAtm7S 47rpF1u1j6xE78FU7tJo56jGqE4aua60Tum1hK6b5Ofbi1q/UTe5EqU2M00Mi+7gx3R9zx4J U4kWZaYEW/FNYWU8AgRvoUx/4iT8sSq9ZeeSUVTv/B/wGXCYX3egPlDIXsUfqQb6MhnBH1y6 8MhfWVlghCr34pawZq+Q+how8AtdYzlYNxZtXZnwjXUS/0hRPgvQY2QvY4ejGp2354RW6qBD yYaQWIHgBDoZgBMN0wXFJMhlf2pwHj+ciFdgF2QrKszpWPUyWSd1ZCxaYWNJoDQG625mG68v DP7olnCUihCKcGU1zWe8XWGvdXAyHaTtIU6TeXkrJaGmma7zWsKTRYSSFGTuui8kkf4WtRFK kVS9DBGkEQp3EmiT924WxPh5XDY4VgTXN1fF+B84waIokbJ3+qHLmwWSAwCZPELju11bD84+ E+Mg+/3OgU65dV5Vkmh3ruTqDqzPw0cImkDeTIIQGM5Dz/L8N5bYvXnHokLLUKlsjHmMWqvn G3S/UDSk51W3JFbjfzqlbzSq2v0/sChc+Ij2unAsouYAu5RYYekY8ms5wGe46ofaomeSVaFs T4PnM32AAEy4XOlxXDlrAYlRurBCxO53Nv03wUH834JqWjFxpJbVdoMiAyS3W8wWir+RRfnY VXIpSRa74JJMX2hYMdfOtzuU511nfa7T4q1Bpg4i+aihLAhJGdrGwk+NSatM5zFzSDAbIlla MnFKZ3wZZrkIfQ4lWPeqxghPU8Dn3hinws/tLj0yBOo1bf2WZJmYeZtDbd6VchgtPnsiFyNr b53bpLWoz0CDrCWSnSIqeY7cwpWRVBlXsueg5IMJoa+zv9OQj5J5wn5muN/JeSIXs19yo/1w 51KchQBkAKj2SGYcF/ih7IKQOqHYKuTZEkTZUQEVWtEEVB6CWp2xPZEL8kEbvM8+fZ9zPV5a fAAdo/SSr5MUznLsXBVJ5X0sIUoJlzhiBOsLhiVRmE1X6dhYAjVpf7iXA/krxcVAgSN6MARn ryH1yHge6QleThMNsjtRciU/wuDhkRFwONWdGnUE+ZXY3TpodRLKTSur/oZIPMsCBTkxxmc3 Tm4GR0z+OvH+dc01PLrhqm0iZijPMUjP0hdHkjdta2XMwuD9EWd4IZwasS6VhGDa3HVoYKJe vdw48znFsE+jHJmktZZAql666AT/P7trOJq9RtlF3D1cFibMLNsDX2Y181ptKcW5LtmlSape 0CI6P9IEK6oPZ77LVsvOwYVVOSP+vUKkD307/5uAkHb5jdyzYWXQ3dpIBiApyxMHoRbaLp/7 78ah/cXzAijhj4BENWM1HlU/lvRCE0wafwss5VCDbL7jgYu9Ep5XqXdLS3IsbWvcNRHN3c4L gCE3JTig6tu/WucUn4RO0WU489jq8UghBR4wmUGBWy1ofvep/pu3BRu4TU9FQtU6RNc0tNMA GtgNmwrBKCC4wZXgNNnWkayETpgHzycwFT6kHESpV3aTm6pd23DF3I8MuCz53Ik83pQUzxY3 bOAwkPnbGrOUOTu+BAtAGhJhufGT9Nj0iHjwuWcANWjDZ02RRHHk52eTzMEhDW/CPxgmXCdg /dh+dhBTJHSNAkShvYeIJab37FBcyK0DjVObt859ZxYAFyGXi+53AWPDEWDesltAfju2m3gA uxMIvN/bTiP5BysnBs6W5FVe6RVmcQ37uUsYrnofG4Kk4WOpwpT7a7/yHLMu38Jcf5Pz+ANc pjcZhCTIFy23HF0oVLAnONAG2i/YOQHWjHC4fCIwL0JOa4u4OBIWmMu44SwpESQYVdG/QrLn QbtZJ327u1FyKZwrrToCYF8FwCREor2csiD7TLp4sp8N8PLFcLoqQkui0LGOj5ONuA7QOVHl rWqsf/20njavb0wbXvrppmZG4RN5uSwROByIOutCFV7xAysANTN5TkH8ECGca15qstXvJSbd lHpefmOes4wcPYD4n9sMgx1MQsXUobzZYfe/RKNleyGUEUh4FaWPeGc1CHbaE9AfXU1ILz4M Aj/vsiu6v1+rIhhABwlBelsM6RnIW3MCLcXSNnsiQa2VmWYoEuOmr/HpyoS7TvmDnqlEsGj7 6ycF1K6PF63tbrTxd5Uj51qs1dFRDxhiO03ZQQG98Qwlzm+C3UcIP8ANYkdTKtZiTH2yIqyc QSlgLHO0skhdW8sndTADNXfssO3A+UPPpL9KGVs8R/LLSixA4yEDf1q8SIID7KavNf85LnPF D3c0iSY0tuNLlVBSuMa5/j9iuBirh8f7mxd4ljzyqQeHD5HaYjnFxVd8M5lWinOEsWLn0LOT YTwqaaoX2njIXPM/Q1cl7K51f3XUP4DD9nlUMtX/Ovihg==
  • Ironport-hdrordr: A9a23:hhQdw64kwQyUERfAQwPXwPfXdLJyesId70hD6qkXc20sTiX4rb HWoB1/73XJYVkqKRQdcLy7Scu9qDbnhP1ICOoqXItKPjOW3FdARbsKheDfKn/bexEWndQtsp uIHZIObuEYzmIXsS852mSF+hobr+VvOZrHudvj
  • Ironport-phdr: A9a23:KanKuRG3AktS1dpbAAA8jJ1Gf7tGhN3EVzX9CrIZgr5DOp6u447ld BSGo6k30RmQBs6Cs6IMy7KP9fy6BSpYudfJmUtBWaIPfidNsd8RkQ0kDZzNImzAB9muURYHG t9fXkRu5XCxPBsdMs//Y1rPvi/6tmZKSV3wOgVvO+v6BJPZgdip2OCu4Z3TZBhDiCagbb9oI xi6swXcutMLjYZsJao91wfFr3hVcOhS2W9kOEifkhni6sq/5pJv7zhct/c8/MNcTKv2eLg1Q rNfADk6KW4++dfltQPETQuB53scVnsZnx9VCAXb7x/0Q4n8vDLiuuVyxCeVM8v2TaspWTu59 KdkVAXoiCYcODEn9mzcl9F9g7haoBKloBx/3pLUbYSIP/dwYq/RYdUXTndHU81MVSJOH5m8Y pMAAOoPP+lWr4fzqVgToxWgGQaiC/jiyiNRhnLswaE2z/gtHAPA0Qc9H9wOqnPUrNDtOacXT OC1z7fHzS7Db/hLxTf96YbJfQo7ofGNQLl9ds/RyVQsFwzblVWQqZDlPzKb1+sXqWib7vBsV eOui24mtwFxpyOixsgpiobTh4IVzkrI+jl+wIYwPNC1TlNwbtG4HpVKrS6aK5d2Td04Q2Fuo Cs3yb0LtYK0cSUKyJkqyR/SZvyHfYWL/B7tWvicLCp2in9qZb+yiAi//Ey8xuHiSsW531lHo zRYn9TCq3wA1RPd586aQfVz+Ueh3CyA1wHV6uxcLkA0lLbbK548wrErjJYcrUPDHirwlU7rj 6GWbl0p9va05+njeLnrpZ+RO5Vphgz/MKkigMOyDOY+PwMTRWaU4/6826fm/UDhQLVFkPk2k q7BvZDfP8sbp6q5DxZR0oYt9hqzFjmm3dsakHUdI1JFfxWHj4ftO17QOvz3EfC/g1G0nDdqw fDJIKHhD43TInTflLrtZ7Vw5k5GxAYuzN1S5YhYB74DLf7rX0/+rt3YDhs3MwyuxObnDc1w1 oYDWWKMHKCZK6PSsUOJ5uMhOeaMfo4VtCz8K/gk5v7ukXo5lEQSfamsx5QXaXS4Eu56LEWeZ HrgmtEBHnwSsQokUOPqkEGCUSJUZ3uqQq4w/is7B56+DYffWoCth6SM0zu8Hp1Pf2xJFlSME WrzeIifQPcNaCeSItd7nTAeVLihTZUh1RC0uwPgxbpnNLmcxipNvpX6kdNx+uf7lBco9DUyA d7O/XuKSjRxg2AFXD9+wKFgqFZ8ggOGzKt1mPxEFMNa/fIPUwY7KZv0wOlzCtS0UQXEKITaA G26S8mrVGliBuk6xMUDNh4V87SKixnC23HvGLoJj/mQA4Ry9KvA3n/3LsI7ynDc1aBngUN1C tBXOziAgahyvxPWG5aPi1+QwqO3dqkH3DLM626ZzCyPvUBEVSZ/VKzEWTYUYU6F5c/h6Bb6R qS1Qa8iLhMHzMeDLqVQbdi8iEhFSezjJNXBaniw3WaxBAqN7ryJZYvuPW4a2XaVE1AKxiYU+ 3vOLg0iHmGhrmbZWSRpDk7qaljw/PNWrXq6SgowwVjPYRE+kbWy/RERiLqXTPZ7MqssniAnp n00GV+824mTEN+cv096e70aZ9oh4VBB3GaftgpnP5XmIbowzlgZOx96uU/jzXAVQs1JjNQqo XU2zQFzNbPQ0VVPcCmd1IzxPbufI3f7/RSmYarbkl/E19Pe9qAK4fU+41Lt2WPhXk8/8Hh80 8VUzHKG59PLDQsOVLr+V082815xoLSbKigx6oXI1GF9ZLGuu2ynuZphD+8kxxC8OtZHZfncR UmiTotDWZfodLN5/jrhJggJN+1T6qMuasavdv/dnbWuIP4lhzW+y2JO/IF61EuIsSt6UO/Bm ZgfkJT6lkOKUSnxiFC5v4X5g4dBMHsXA2my0ij4BZFYfKw0fIcKFWKGLMi+x9E4jJnoES09l hbrFxYd1cmldADHJVng3gBL1VgWvnW9mG25zj1olhkmq6Oe2GrFxOGoJ39lciZbAWJli1nrO 429idsXCVOpYwYenxyg/U/mxqJfqcyTNkHrSFxTN2jzJmBmCe6rs6aaJtVI8NUuuDlWV+K1Z RabTKT8ql0UyXGrE2xbzTE9Pzak3/ex1xlni2+GLGpys3PDeIdxxBbD4fTTQPdQ2nwNQywwh TTMB1e6NsWk5p3Oz8aF4r34Djz+EMEMOSDwqOHI/DO2/2hrHQGyk7iol9vrHBJ7mS732t92V DnZ+RP1Y43lzaO/YqpsekhlAkO56tIvQNkv1NttwshOhj5G2cbwnzJPi2r4PNRF1LiraXMMQ WVO2NvJ+E3+31UlKHuVxoX/X3Hbw817ZtD8bHlFv0B1p81MFqqQ66RJ2CVvpV/t5wfMYvVmn isc1vI06TgbguAVvSIiyyycBvYZGkwSbkmO31yYqsuzqqlafjPldKWz2VF+gdG+BauD5ABdW Wr8UpgnFC50qM54NRiftR+7opGhc97WY9UJsxSSmBqVlOlZJqU6kf8SjDZmM2bw7jU1jvQ2h ht00dSmrZCKfi9zqbmhDEcSZViXL4sDvyvghqFEkoOK0pCzS99/Ty4TUsKgTOr0QmlP8622b 0DUTGJ68jDBRfLeBVPNthsg9SmUVcn1bzfPYyBIqLcqDBiFeB4B3kZNBG98xthhUVryjM35L BUnuHZLug+++kMKkqUyb1H+SjuN+13uM2tyEcnFakIRt1EnhQ+dMNTCvL0vWXgCo9v56lTKc zLTZhwUXzhRCgrdWA+lbv/2ooOZu+mAWrjncKCIOOTS77QYD7DRm/fNmsNn52rebJ3eeCk/S aRhigwbGikmU8XBx2dVEnJRynKLNp/B4k/7o3w/r9jjoq6yBkS1vtrJUOEUaZI2qnXUye+VP uqUzk6VMB5+0ZUBjT/NwbkbhxsJjj12MiKqCfIGvDLMS6TZnulWCQQaYmV9LpkA6aV0xQRLN cPB77G9nrdlkv44DUtEXl39i4moY8INOWS0KFLAAg6CKr2HITTBx8y/b7m7TPVci+Bdthv4v jj+cQerJjOYizzgTAyiK8lJhSCfeRhQ4cSzLkkrBm/kQ9brLBa8NZ4/jDE7x6E1mmKfNWMYN msZEQsFpbmR4CVEx/RnTjYZvzw1cK/dxXnfs7aLT/Re+eFmCSl1ie9AtXEzyr8OqTpBWOQwg yzK6Nhnv1ChlOCLjDthShtH7DhR1+fp9Q1vP7vU8p5YVDPK5hUIuC+VFhcHvNt5C8LmoaEWy 9nOiKfbJzJL8taS9swZTZuxSorPID86PBzlFSSBRhMCViKuPHrDilZ1lfiT8jiRoMF/pMSz3 pUJTbBfWRo+EfZQWSEHVJQSZZxwWD0ji7uSisUFsGG/oBfmT8JfppnbV/iWDJ0HzR6WiLBFY 10Dxraqdez72aX03kVjbh9xm4GYQiI4vPhIqyxlKws6+QBDrCc4QWo01EboLAiq5S1LfcM=
  • Ironport-sdr: 638d9cd4_q5412ovl6CL7ey0HRW9+P4wah6q1qZBZmOFOobAeFpGoGji H52xuQLugQGLoSbjT1f/akOi7ZosQwn2mjL/2ZQ==

Hi Dominique,

"However, it does not properly characterize proper subsets IMHO.
Indeed you have eg [1;1] is a proper subset of [1;2;2] but also of
[1;1;1]." Agree and that is why I used List.length to get rid of these
kinds of examples and force strict decrease.

"I would suggest using "there is a point in ys which is not in xs"
(rather than the length criteria) to witness strict decrease. Also wf
but somewhat harder to prove. I can point to some code if needed."
That will be great if you can point me to some code for this.

Best,
Mukesh

On Mon, Dec 5, 2022 at 5:26 PM Dominique Larchey-Wendling
<Dominique.Larchey-Wendling AT loria.fr> wrote:
>
> Hi Mukesh,
>
> Your "subset" relation is included in the relation length xs < length ys so
> it is wf by combination of wf_incl, wf_inverse_image and lt_wf.
> Decidability of eq is *not* needed.
>
> However, it does not properly characterize proper subsets IMHO. Indeed you
> have eg [1;1] is a proper subset of [1;2;2] but also of [1;1;1].
>
> I would suggest using "there is a point in ys which is not in xs" (rather
> than the length criteria) to witness strict decrease. Also wf but somewhat
> harder to prove. I can point to some code if needed.
>
> Best,
>
> Dominique
>
> Le 5 décembre 2022 06:50:10 GMT+01:00, mukesh tiwari
> <mukeshtiwari.iiitm AT gmail.com> a écrit :
>>
>> Hi everyone,
>>
>> Is this (proper) subset relation is well-founded? Based on my understand,
>> I believe the answer is no (and maybe we need more assumptions), but I am
>> happy be proven otherwise. You can see the complete code [1].
>>
>>
>> Definition finset (A : Type) := list A.
>>
>> (* proper subset *)
>>
>> Definition subset {A : Type} (xs ys : finset A) : Prop :=
>> (∀ x, In x xs -> In x ys) ∧
>> (List.length xs < List.length ys). (* for proper subset *)
>>
>>
>>
>> Lemma well_founded_subset {A : Type} :
>> (∀ x y : A, {x = y} + {x ≠ y}) ->
>> well_founded (@subset A).
>> Proof.
>>
>> intro Hdec.
>> unfold well_founded.
>> induction a as [| ah al Iha].
>> + econstructor;
>> intros ? [Hyl Hyr].
>> simpl in Hyr; nia.
>> +
>> (* Induction Hypothesis peeling *)
>> pose proof (Acc_inv Iha) as Ha.
>> (* transitivity *)
>> econstructor;
>> intros xt Hx.
>> (* I can unfold one more time, but
>> will I get anything meaningful? *)
>> econstructor;
>> intros yt Hy.
>> (* case analysis *)
>> destruct (List.In_dec Hdec ah yt) as [Hb | Hb].
>> ++
>>
>> (* In ah yt *)
>> pose proof (subset_member _ _ _ Hb Hy) as Hc.
>> (*
>> ah ∈ xs so I can write
>> xs = xsl ++ [ah] ++ xsr.
>> From Hx : subset xt (ah :: al)
>> I can infer: subset (xsl ++ xsr) al.
>> But there is no way I can establish:
>> subset yt (xsl ++ xsr) for transitive and
>> induction hypothesis to work.
>>
>> My conclusion is: it's not provable but
>> happy to be proven wrong.
>>
>> If it's not provable, can we make subset relation
>> well founded?
>>
>> *)
>> admit.
>> ++ admit.
>> Admitted.
>>
>>
>> Best,
>> Mukesh
>>
>>
>> [1]
>> https://gist.github.com/mukeshtiwari/ecdebdae6f28ddf4b231d160b16de37d



Archive powered by MHonArc 2.6.19+.

Top of Page