coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: richard <richard.dapoigny AT univ-smb.fr>
- To: coq-club <coq-club AT inria.fr>
- Subject: [Coq-Club] Equivalence for propositional functions
- Date: Wed, 25 Dec 2024 00:09:00 +0100
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=richard.dapoigny AT univ-smb.fr; spf=Pass smtp.mailfrom=richard.dapoigny AT univ-smb.fr; spf=None smtp.helo=postmaster AT smtpout01-ext2.partage.renater.fr
- Dkim-filter: OpenDKIM Filter v2.10.3 zmtaauth05.partage.renater.fr E2FDA201FE
- Ironport-sdr: 676b4a1a_JV95cufz/DobSYv3e0ZkFO3sxL+oUvqOB2JsVvMJORt5tF4 6vgpkr8CpI1vOsVZel5cl9r0VvVsbwLoanoRq6g==
Dear coq users,
In Coq it is possible to prove image equality for functions : Theorem eq_img: forall {X:Type} (f: X->X) (x y :X), x = y -> f x = f y. However, is it possible to prove similarly an equivalence for propositional functions (assuming classical logic)? :
Theorem eq_fprop: forall {X:Type} (f: X->Prop) (x y :X), x = y -> f x <-> f y. Thanks for your help. Richard
- [Coq-Club] Equivalence for propositional functions, richard, 12/25/2024
- Re: [Coq-Club] Equivalence for propositional functions, Théo Winterhalter, 12/25/2024
- Re: [Coq-Club] Equivalence for propositional functions, mukesh tiwari, 12/25/2024
- Re: [Coq-Club] Equivalence for propositional functions, Richard Dapoigny, 12/25/2024
Archive powered by MHonArc 2.6.19+.