Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Equivalence for propositional functions

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Equivalence for propositional functions


Chronological Thread 
  • From: mukesh tiwari <mukeshtiwari.iiitm AT gmail.com>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Equivalence for propositional functions
  • Date: Wed, 25 Dec 2024 10:08:51 +0000
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=mukeshtiwari.iiitm AT gmail.com; spf=Pass smtp.mailfrom=mukeshtiwari.iiitm AT gmail.com; spf=None smtp.helo=postmaster AT mail-wm1-f43.google.com
  • Ironport-data: A9a23:dQVaWKMlOqdtwgrvrR0Ok8FynXyQoLVcMsEvi/4bfWQNrUojgTJUz WQZDGiDbKuNYjHwfoxzYNyz8x8Du5HQxtdjGnM5pCpnJ55ogZqcVI7Bdi8cHAvLc5adFBo/h yk6QoOdRCzhZiaE/n9BCpC48T8mk/vgqoPUUIbsIjp2SRJvVBAvgBdin/9RqoNziLBVOSvU0 T/Ji5OZYQXNNwJcaDpOt/vZ8k435pwehRtB1rAATaAT1LPhvyJNZH4vDfnZB2f1RIBSAtm7S 47rpF1u1j6xE78FU7tJo56jGqE4aua60Tum1hK6b5Ofbi1q/UTe5EqU2M00Mi+7gx3R9zx4J U4kWZaYEW/FNYWU8AgRvoUx/4iT8sSq9ZeeSUVTv/B/wGXJbCCy+ehOJ3gbFp0X4NxwJzlk8 +wxfWVlghCr34pawZq+Q+how9smdYzlYNhZtXZnwjXUS/0hRPgvQY2QvY4ejGp235oeW6qFD yYaQWIHgBDoZgBMN0wXFJMhlf2pwHj+ciFdgF2QrKszpWPUyWSd1ZC3aIKKI4bSGZs9ckCwv kb82krgWFYgJfuB0yur/UKitvTiknauMG4VPOblr6Y10QP7KnYoIBYRTB6wpeSzolWvXspWb U0S4Csn66YonHFHVfH4Vhy85WGB51sSB4EWHOo95wWAjKHT5m51G1ToUBZOd4d4jtIWbgUH/ U+GhenuI2RFtq28HCf1GqivkRu+Pi0cLGknbCACTBcY79SLnG3VpkKfJjqEOP7l5uAZCQ3NL ya2QD/Sboj/YOYO3qS/uE/C2nei+sOPQQky6QHaGGmi62uVhbJJhaT5sDA3Dt4Zc+51q2VtW lBawqByC8hQV/mweNSlGrllIV1Qz6/t3MfgqVBuBYI90D+m5mSue4tdiBknexw0aphZIW+zO ReN0e+02HO1FCv6BUOQS9LhY/nGMYC6TbwJq9iNMYoePMcrLGdrAgk1NB7IjjGFfLcQfVEXY srCKZn9Ux72+Ixoyz25Q+pV0LkggEgDKZD7FPjGI+Cc+ePGPha9EO9bWHPXN7xRxP3e/G39r Y0EX+PUkEo3bQELSnOGmWLlBQtSdSBjbX03wuQLHtO+zv1OQzB4V6WIm+95KuSIXc19z4/1w 510YWcAoHKXuJENAV/ihqlLMeu0AcRMvjggMDYyPF2l/XEmbMz9pO0cbpY7N/1vvuBq0fc+H bFPdtSiE8Z/bG3N2w0cSp3h861kVhCg3jyVMwSfPTMQQp9HRi7ywOHCQDfBzic1IxCMhZMMm IH4jgL/argfdjtmF/fTOa6OzUvunH0zm9BSfkrvI/tVcnrC6IJBdi771Kc2B+ouKhzz4CSQ+ CjLIBUfpMjL+5QU9vuQj4+6jo6ZKclMNWsEIHv6tJGdKjv/0le457N5QMKkXGz4RXzl3qePf sBXxKzMC+IGl1N0rIZMKbZn4qYg7d/JpbUB7ABbMFjUTlasGJVyC2Kn2JRRi6hz2bNpgwu6d UaR8N18O7/SGsfEEkYUFTU1fNa4yvAYtTnD38sbeHygyndMw4OGdkFOMz2nqi9XduJ1Obx45 9YRgpcd7gjnhyc6NtqDsDtvyF2NCX49SIQiiIARBd76qwgsy2waW6fmNA3N3MitZelPY24QG R3FoIrZhr9Z+FjOTGprK1jJwthmpMovvDJk8QY8Amqny/v/u+8P/RxO8D4IYBxf4TdZ3slSZ GV6FU1HCp+f3jVvhcJ8cXimMFgaDiG05n7z8kktkWHHRROkTV72cW83Y76M2Gs78GtsWCdR0 5/F6WTiUBfsJNrQ2AlrU2FbivXTd/5D3Sycp9KCAOKEAMMccxf+p62TOVoztBrsBP0uiH39p eVF+Ph6bYv5P3Uyp5IXJpa717NKbjy5P01HHO9c+Z0WEVHmeD2d3SaEL2azcJhvI93I6UqJN Nx8FPlQVhiR1De8kR5DPPQie4RLpf8O4MYOXpjJJmRc6ruWkWdPgaLqryP7gDcmfsVqncMDM bjuTjOlEFGLpH5qimTI/dhlOG25XIE+XzfC/tuJqccHK5FSl9tXUxAW8qC1tHCrIgdY70qqn AfcVZT3kc1m66pRxrXJLIsSKTmwG93JUMawzDuSqPVLNNPGDtfPvVgaq37hJAVnAoESUNVWy 5WIvMLG40femLMQTWriuoKgEpNR7p6YR9tnMcPQLVhbkxCdWcTq3QAxxmCgJbFNk/Jf/sOCR TbkTOeVavguRI576FBOTipRATIxKv7SVbjxgzG5o9CnKAkv4SaeIPyJrXbWPHxmLAkWMJjAO yrIkveJ5PUDia9TBRUBVspUM7UhLHDNAaIZJsDM7x+GBWyVg3SHiLvotTwkzRrpUnCkMsLL0 ajpdyjEViaZmf/3lYlCkolIoBcoIm53grAwcmIj6tdGsW2GI1BcH9sNE6ctK89yqTPz5qHad TuWTWoFCAfBZxpmXyj4wuzeWla4OrRTFPb/fzAnxhbBIWP+ToaNG6Bo+Spc8m97MGmrhv2uL dYFvGb8JF6ty5VuXvwe/eG/nfwh/P7B23YU4gropqQe2frF7WkijxSN3TahVBAr1+nInUTPY HcwHCVKHBr9Rkn2HsJtPXVSHXn1ed8pIyoANU+yLBT34u13D9GsDNXwPujy1vsIa8FiyHsmW ybsX2XUi4yJ8iV7hEbq0u7FRYd7DPuKGo6xK6qLqcj+WU2vwjxPAv7uVhbjgC3vFMCz3r8de vSRD6ACOXm4
  • Ironport-hdrordr: A9a23:jpAB/K67Nb/s88smbwPXwOzXdLJyesId70hD6qkRc20xTiX8ra qTdZsgpHnJYVoqKRMdcJW7SdK9qA3nhORICPgqTNOftWDd0QPCXeJfBMnZskTd8kXFltK1vp 0QFJSWZueAdWRSvILV5E2XHb8br+VvM5rFuQ4d9RpQpM1RBZ2Ilz0Jdzpz23cWeDV7
  • Ironport-phdr: A9a23:7+9cCRe8UjlPVoGtzYfws77YlGM+4dfLVj580XLHo4xHfqnrxZn+J kuXvawr0ASQG9yCtbkc1KL/iOPJZy8p2dW7jDg6aptCVhsI2409vjcLJ4q7M3D9N+PgdCcgH c5PBxdP9nC/NlVJSo6lPwWB6nK94iQPFRrhKAF7Ovr6GpLIj8Swyuu+54Dfbx9HiTezfL9+N gi6oRjQu8UZnYdvKLs6xwfUrHdPZ+lZymRkKE6JkRr7+sm+4oNo/T5Ku/Im+c5AUKH6cLo9Q LdFEjkoMH076dPyuxXbQgSB+nUTUmMNkhpVGAfF9w31Xo3wsiThqOVw3jSRMNDsQrA1XTSi6 LprSAPthSwaOTM17H3bh8pth69dvRmvpQFww5TMbY+VKPVxcb7Tc90URWRfXMlfVCtPD5imY IcTCuoMJ+ZYo5X/qlYIsBCwBROsBOTqyjJQg3/2wK463Po6EQHGwQcgA9MOsXrOo9XvNacZT Oe4zKzVzTXAcfxWwjf96JTJchEvu/6MR7NwfdDQyUkuFgPFklCQpJfqPzOQzOsNsmyb4/B8W uKojm4qsgd8qSWgyckwkIfGnJ4Vykza+iVjxoY4Pd22RUBmbNOlDJddsy+UOot0T80tXWxkp To2xL0CtJKmfCUHy4kqygDfZfGafYaF4R3tWfiSLDtkmH5oe66ziwu0/EO9xOP8Ucy030xLr ipDitTMuXEN1wDT6siaUfRx5Fuu2TGK1w3V9+pKIlg0mLLFJ5I9xrM8jJkevETZEiPrhkn7j 7Wae0oq9+Sw9ejoeKnqq5uZOoBvkA7xLrkil8mhDek7LgcCQ22W9vi/2bDm+ED1XqtFguEzn 6bHrJzXI9kQq7C9Aw9IyYYj9wiwDy273tQZnHgIMkpIdA6BgoP0IV/BOur4Au26g1m0kDdk2 fTGPrr5D5XINHfDkbPhca9z6k5Z1QY/1N5f6p1aB70bL/LzXUjxtNPcDhAnKQC73+HnCNBl2 oMfX2KAHLOZPbvMvVOU4u8jOeqBaY8PtDrgNfQo5OTigHA3lFMFeKmmx5oXaHS2HvR8JEWZZ GLhgtIcEWcJoAU+V+zqiEGDUT9dfXmyRaM86is6CIKnDIfDWoWtjaeO3Ce+BJJWZ2RGBkqQH nfvcoWIQ/EMZzmKLc97jjMETaShS5Mm1Ry2qQP206BnIfbM+i0EqZLj08B46PHUlREr7DB7E 8Cd03yWQGxvhWMJRzo23LhlrkBny1eD17J4g/1CGtBJ6fNJSFRyCZmJxOtjTtv2Rwjpf9GTS V/gTM/1Lys2S4c03twDeEY1B9S9hwrCl36vHrwYjLyXBYM96KOa3nnwO8NVxHPP1a1nhF4jF JgcfVa6j7JyolCAT7XClF+Uwv7CncU02SfM8D3G1m+SpARCVwU2V6zZXHcZb0+QrNLj50qEQ aX9Qa8/PF5nzsiPYrBPdsWvlU9PEfL+O9nFY36whG6qBFCJx7KQaaLlfmwc2GPWD01X2xsL8 yO+PBMlTjykv3qYCTVvEVz1ZEa59PR9pWi7Uk4rxhuLKUxg1qaw0hEQjP2YDfgU2+FMoz8v/ hNzGlv1xNfKE5yAqg5mKb1bes846Uxb2HjxsgV8Otm/KvkniAJFNQtwuEzq2lN8DYAofdECi nQswUIyLKuZ1AkEbDaExdXqPbaRLGDu/RepYqqQ21fE0d/Q9L1doPI/407uug2kDC9Auz1uz sVV3n2A557LEBtaUJT/VVwy/gR7oLeSazc05ofd33lheaeutTqK19UsDeojghGuGrUXeKaZF wLpE9EbGMG0Kaormlm1azoLOelT8Og/OMbnP/qK1ai3PfpxySq8hDcigsg12UaN+ixgD+/Qi sxdkrfIg03eDWe60Azy16K/0ZpJbjwTAGelnC3tBYoLI7Z3YZ5OE2ClZcu+2tR5gZfpHX9e7 l+qQV0ci6rLMVKfaULw2QpI2AEZu3uizGG90j95iDE1r7WWxi2IwuXjaB8vNWtCRW0khlDpa 9vR7ZhSTA2zYg4lmQHwr0PnxKVApLh+MGDJQAFJfinqKkltV6KxsvyJZMsFu/ZK+W1HFe+7Z 16dULv0pRAXhjjiE2Vpzzc+bzi2u5/9knSWkUqlJW1o5DrccMB0n1LE4cDEAORW1XwATTV5j j/eAh69OcOo9JOajcWLvue7XmOnHppdFEujhYadtyag5XFrHhSlnraym9z7FCA11Cb6059hU iCAoBvnY4bt3ri3Kqo9JhguVAK6spAqXN0l2oIr4fNYkWAXnJCU4WYKnS/oPNNX1Li/JHsBS DgXwsLEtQ3s2UltNHWMlMryUnSQxNckZsHvODtHnHJgqZkQWOHIt+8h/2M9uFezoAPPbOIom z4czaFr83sGm6QTvwFryCyBA7cUFE0ePCr2lh3O4crtyccfLGupb7W001Jz2N67C7TX6ARBW 3vieosjAiZq74N+MVPQ1VX874jlfJ/batdZ5Xj221/QyvNYLp48jK9AgDdkNHn9oXw6wvQ6y x1v3I2/lIeCImRpuqm+B1QLU1+9L9NW8Tbrg6FEm8+Q1I36BZRtFAIAW57wRO6pGjYf5rz3c hyDGzompjKHCKLSSEWBvVx+oSuFQPXJfzmHYWMUxtJ4SFyBKVxD1UoKCS4ikMdxFxj2lpe8N h4ovnZLugG+8lwWlqppL0WtDDuZ/lzzLG5qEN7Ha0MHi2MKr0bNbZ7AsKQqR3septv561bVY m2DO1YWUydTBh3CVwilZv70vZHB67TKWbD4dqeIOOTU77QZDqftp9rn05M6rWnQcJzVYz86S aV8gxQLXGglSZ2By3NWFHNRx2SVKJTC7Bakpn8u8Zv5qaW3HlqpvczWVd4weZ1u40zk2//Sc b7Nwn8jeXAAkcpTjX7QlOpFhQBU1nEoLmj3V+xH7H+FTbqMyPUOUVhBMHI1b5EOt+Vlj2wvc YbNg9fxnNaUl9YTDFFIHRzkk8CtP4kRJn2lcUnADwCNPaiHIjvCx4f2Z7m9QPtelrccsRr4o judH0L5W1bL3zD0SxCiN/1NhyCHLVRfvo+6aBNkFWnkSprvdBS6NNZ9iTB+z6czgzvGMmsVM D40dE0ozPXY9SRDnvB2AHBM9FJgJOiA3jmctqzWds1QvvxsDSB50eld5TVyyrdY6j1FWO0gm CbWqY0LwRnume2Oxzx7FRtW/2wT1cTb4AM7Y/WfqsITPBSMtAgA5miRFRkQ8t5sC9m1/rtV1 sCKjqX4bjFL79PT+8IYQcnSMsOOdnQ7Yn+LUHbZChUISTmzOCTRnUtYxbuX636YtZgmq4flg ptIS75aSFkdGfYTC0AjF9sHasQSPHtsgfuAgcgE6GDr5gHWX9lft4vbW+i6BPzuLHOGiOABa UdTh7z/KosXO8vw3EkoOTwY1MzaXkHXW95KuChoaAQ59V5M/HZJRWo2w0v5awmp7Rf78Na7m xc3jk11ZuF/rF8EAn8yL1vO4TQ1yQw/xY6jjjeWfzr8aqy3WNMOY8Ibn0c0O5L/BQ1yaF/r9 XE=
  • Ironport-sdr: 676bd9c0_n71QJxjF9R0oRJVzzuK3Zjl/hA27Y0PFTN5lM67B4nIIR1L utPdIc4QD1z/6TLbzaZrte2lLOiiAXd2m9GzTuA==

Hi Richard, 

You don’t need classical logic for eq_fprop, but if you are willing to assume propositional extensionality [1] rewriting will be easier. 



Theorem eq_fprop: forall {X:Type} (f: X->Prop) (x y :X), x = y -> f x <-> f y.
Proof.
  intros * Ha. split; intro Hb; subst;
    exact Hb.
Qed.


Axiom prop_ext : forall (P Q : Prop), (P <-> Q) -> P = Q.

(* assuming prop_ext *)
Theorem eq_fprop_ax : forall {X:Type} (f: X->Prop) (x y : X), (f x <-> f y) -> f x = f y.
Proof.
  intros * Ha.
  eapply prop_ext.
  exact Ha.
Qed.


Best, 
Mukesh 





On 24 Dec 2024, at 23:09, richard <richard.dapoigny AT univ-smb.fr> wrote:

Dear coq users,

In Coq it is possible to prove image equality for functions :

Theorem eq_img: forall {X:Type} (f: X->X) (x y :X), x = y -> f x = f y.

However, is it possible to prove similarly an equivalence for propositional functions (assuming classical logic)? :

Theorem eq_fprop: forall {X:Type} (f: X->Prop) (x y :X), x = y -> f x <-> f y.

Thanks for your help.
Richard





Archive powered by MHonArc 2.6.19+.

Top of Page