coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Richard Dapoigny <richard.dapoigny AT univ-smb.fr>
- To: coq-club <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] Equivalence for propositional functions
- Date: Wed, 25 Dec 2024 11:20:28 +0100 (CET)
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=richard.dapoigny AT univ-smb.fr; spf=Pass smtp.mailfrom=richard.dapoigny AT univ-smb.fr; spf=None smtp.helo=postmaster AT smtpout01-ext2.partage.renater.fr
- Dkim-filter: OpenDKIM Filter v2.10.3 zmtaout05.partage.renater.fr B0995A00E7
- Ironport-sdr: 676bdc6e_BHmSAUjRL6fIPbszL/BIIrGXvUyy6jLipo/MY59sIyIejwV mKQXK50v4vgUSgrylkgL3ly6rQTwGfMJWmxnSxA==
Ok., thank you for your prompt answer.
Bests.
Richard
From: "mukesh tiwari" <mukeshtiwari.iiitm AT gmail.com>
To: "coq-club" <coq-club AT inria.fr>
Sent: Wednesday, December 25, 2024 11:08:51 AM
Subject: Re: [Coq-Club] Equivalence for propositional functions
To: "coq-club" <coq-club AT inria.fr>
Sent: Wednesday, December 25, 2024 11:08:51 AM
Subject: Re: [Coq-Club] Equivalence for propositional functions
Hi Richard,
You don’t need classical logic for eq_fprop, but if you are willing to assume propositional extensionality [1] rewriting will be easier.
Theorem eq_fprop: forall {X:Type} (f: X->Prop) (x y :X), x = y -> f x <-> f y.
Proof.
intros * Ha. split; intro Hb; subst;
exact Hb.
Qed.
Axiom prop_ext : forall (P Q : Prop), (P <-> Q) -> P = Q.
(* assuming prop_ext *)
Theorem eq_fprop_ax : forall {X:Type} (f: X->Prop) (x y : X), (f x <-> f y) -> f x = f y.
Proof.
intros * Ha.
eapply prop_ext.
exact Ha.
Qed.
Best,
Mukesh
On 24 Dec 2024, at 23:09, richard <richard.dapoigny AT univ-smb.fr> wrote:Dear coq users,
In Coq it is possible to prove image equality for functions : Theorem eq_img: forall {X:Type} (f: X->X) (x y :X), x = y -> f x = f y. However, is it possible to prove similarly an equivalence for propositional functions (assuming classical logic)? :
Theorem eq_fprop: forall {X:Type} (f: X->Prop) (x y :X), x = y -> f x <-> f y. Thanks for your help. Richard
- [Coq-Club] Equivalence for propositional functions, richard, 12/25/2024
- Re: [Coq-Club] Equivalence for propositional functions, Théo Winterhalter, 12/25/2024
- Re: [Coq-Club] Equivalence for propositional functions, mukesh tiwari, 12/25/2024
- Re: [Coq-Club] Equivalence for propositional functions, Richard Dapoigny, 12/25/2024
Archive powered by MHonArc 2.6.19+.