Skip to Content.
Sympa Menu

ssreflect - Re: [ssreflect] Localization of a ring

Subject: Ssreflect Users Discussion List

List archive

Re: [ssreflect] Localization of a ring


Chronological Thread 
  • From: Bas Spitters <>
  • To: Cyril <>
  • Cc: Assia Mahboubi <>, Ssreflect-mailinglist <>
  • Subject: Re: [ssreflect] Localization of a ring
  • Date: Fri, 9 Jun 2017 17:01:32 +0200
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None ; spf=Pass ; spf=None
  • Ironport-phdr: 9a23:SbKfehTZHFhWm4IhgEym8RcEa9psv+yvbD5Q0YIujvd0So/mwa69YxeN2/xhgRfzUJnB7Loc0qyN4v+mATRIyK3CmUhKSIZLWR4BhJdetC0bK+nBN3fGKuX3ZTcxBsVIWQwt1Xi6NU9IBJS2PAWK8TW94jEIBxrwKxd+KPjrFY7OlcS30P2594HObwlSijewZbF/IA+qoQnNq8IbnZZsJqEtxxXTv3BGYf5WxWRmJVKSmxbz+MK994N9/ipTpvws6ddOXb31cKokQ7NYCi8mM30u683wqRbDVwqP6WACXWgQjxFFHhLK7BD+Xpf2ryv6qu9w0zSUMMHqUbw5Xymp4rx1QxH0ligIKz858HnWisNuiqJbvAmhrAF7z4LNfY2ZKOZycqbbcNgHR2ROQ9xRWjRDDYOyb4UBAekPM/tGoYbhqFUDtge+BRC2Ce/z1jNEmn370Ksn2OohCwHG2wkgEsoTvXvOt9X+KbocUfi0zKnU0TXMcelW2Szg44XPaR8tu+uDUah+cMbL0kkvDwLFjkmMqYP7JTOVzf8As2ee7+V6VOKvj3QrpB12ojiq38ohjJTCiIENyl3c6yl13II4Kce7RUN7e9KoDoZcuiOAO4drQc4uXmdlszsgxLIco560Zi0KxYwnxxHBb/yHdJCF4hf5W+aQJTd0nW9ld6ijixqr/0is1+7xWtSu3FZFqSpFldbMtnQT2BDJ9seHTf598l+g2TaJyQ/T9vlJLV4omaffMZIswb49moANvUjeHCL6glj6gayLekk8/+in8eXnYrHopp+GMI90jxnzPb80lsOlG+g5PBICX3OD+eS9yL3j4VP2QK9RjvAtnanZtYrVJcUfpqKjHwBV1YMj5w6lDzi6yNQYgWUHLFVddRKclIjpIU/BIP78Dfihn1usjCxmx+vGP73kGpXCNGLPkLbnfbZn6k5T0hA/zd5F58EcNrZUC+PpW0u54NfJFB49dQezw+vhINR7zIIXH2yVVPy3KqTX5HWB/aoUO+iQeIIPo36pIb4soeGolmc4hUMQZ7KB0p4eaXT+FfNjdRbKKUHwi8sMRD9Z9jE1S/bn3RjbCWZe

Yes, that was what I was thinking about.
In our case, we only need decidable quotients.

On Fri, Jun 9, 2017 at 4:57 PM, Cyril
<>
wrote:
> Dear Bas and Assia,
> I did consider localization when I was building the field of fractions,
> however, since S⁻¹R does not have decidable equality
> (s⁻¹x = t⁻¹y iff ∃u∈S, u(sy-tx) = 0)
> it does not fit the current algebraic hierarchy of math-comp.
> Best,
> --
> Cyril
>
>
> On 09/06/2017 16:39, Assia Mahboubi wrote:
>>
>> Hi Bas,
>>
>> Le 09/06/2017 à 16:31, Bas Spitters a écrit :
>>>
>>> Hi Assia,
>>>
>>> Consider a ring R and d: R.
>>> We'd need the localization R[1/d] with respect to the multiplicative
>>> set S={1, d, d^2, ...}, the ring of fractions.
>>
>>
>> This looks indeed like the definition of the localization, in this special
>> case.
>> But I was wondering (out of sheer curiosity) about the more general
>> context in
>> which you need this construction.
>>
>> assia
>>
>>> If it is not there, we'll probably just adapt if from the field of
>>> fractions.
>>>
>>> Best,
>>>
>>> Bas
>>>
>
>



Archive powered by MHonArc 2.6.18.

Top of Page