Subject: CGAL users discussion list
List archive
Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3
Chronological Thread
- From: "Joe C" <>
- To:
- Subject: Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3
- Date: Thu, 15 May 2008 08:38:17 -0700
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=message-id:date:from:to:subject:in-reply-to:mime-version:content-type:references; b=X8tHohBZ6e0+sGvsGY7iwfwUsngvQHeSdFcBURsHJLUUoViVA4Zatx+SrrX2Fr9KRKdd1UJ7QHsdYBtaOi4Rrry/ieuashZhb3hAvK0leBMAfOKM7c62v4tA6EX1NyW+A7caQKQoIwDfDW9KRIdB2eRlvR25ICW/eCDOncYbHm4=
Michael and Peter, Thank you for your help!
As Michael mentioned in his email, I do have some reason to use sqrt kernel. I tried to convert a sphere polyhedron (see attached Sphere.txt) to Nef_polyhedron_3. The generation and the conversion were done by using Exact_predicates_exact_constructions_kernel. Both were successful except that I got some exception: CCGAL::Uncertain_conversion_exception when converting polyhedron to Nef_polyhedron_3. If I ignore all the exceptions, I am still able to do boolean operations (like union) using the converted Nef_polyhedron_3. It seems that the exceptions do not affect the results at all, but just annoying. Then I try using sqrt kernel in Release mode, surprisingly, all the exceptions are gone, but compiling failed when in Debug mode.
I guess this is more like Kernel Selection problem. I searched the forum and also tried Simple_cartesian<Gmpq>. It is much slower than Exact_predicate_exact_constructions_kernel, but NO exceptions thrown.
If I still want to have good performance by using Exact_predicates_exact_constructions_kernel, it there any way that I can suppress exceptions thrown (or is it a bad idea to do so)?
Cheers,
Joe
On Thu, May 15, 2008 at 5:16 AM, Peter Hachenberger <> wrote:
Hi,
that's a correct analysis of Michael. Try the
Exact_predicates_exact_constructions_kernel; it should work. If you
really need the kernel with sqrt, you might need to wait for the next
release. The Nef_3 package has some functions that I intended as
features, but actually limit the number of applicable kernels. I will
try to make some of these features optional.
Peter
On Thu, 2008-05-15 at 09:55 +0200, Michael Hemmer wrote:
> Hi,
>
> I am not an expert for Nef but AFAIK it does not need the kernel with sqrt.
> It seems that the code is trying to decompose the Field type into
> Numerator and Denominator (for some reason),
> but this is not possible for CORE::Expr.
>
> Have you tried another kernel, i.e., one that is not using CORE::Expr as
> FT.
>
> best,
> Michael
>
>
> Joe C wrote:
>
> > Hi, all
> >
> > I run into some issue when using Nef_polyhedron_3 with
> > Exact_predicates_exact_constructions_kernel_with_sqrt Kernel.
> >
> > To be specific, here is the simple program I was testing:
> >
> > #include <CGAL/Exact_predicates_exact_constructions_kernel_with_sqrt.h>
> > #include <CGAL/Polyhedron_3.h>
> > #include <CGAL/Nef_polyhedron_3.h>
> >
> > typedef CGAL::Exact_predicates_exact_constructions_kernel_with_sqrt
> > Kernel;
> > typedef Kernel::Point_3 Point_3;
> > typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
> > typedef CGAL::SNC_indexed_items Items;
> > typedef CGAL::Nef_polyhedron_3<Kernel, Items> Nef_polyhedron;
> >
> >
> > int main() {
> > Point_3 p( 1.0, 0.0, 0.0);
> > Point_3 q( 0.0, 1.0, 0.0);
> > Point_3 r( 0.0, 0.0, 1.0);
> > Point_3 s( 0.0, 0.0, 0.0);
> >
> > Polyhedron P;
> > P.make_tetrahedron( p, q, r, s);
> > Nef_polyhedron N2(P);
> >
> > return 0;
> > }
> >
> >
> > I am using Visual Studio 2003 and Visual Studio 2005 with CGAL 3.3.1.
> > <http://3.3.1.> When runing in Release mode, everything runs fine. But
> > when running in Debug mode, I got the following errors:
> >
> > Is this a bug in CGAL or did I do something wrong? I can not figure
> > this out, can anybody help me out?
> >
> > Joe
> >
> >
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(300):
> > error C2064: term does not evaluate to a function taking 3 arguments
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(305):
> > error C2064: term does not evaluate to a function taking 3 arguments
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(310):
> > error C2064: term does not evaluate to a function taking 3 arguments
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(315):
> > error C2064: term does not evaluate to a function taking 3 arguments
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(323):
> > error C2440: 'type cast' : cannot convert from
> > 'std::allocator<_Ty>::value_type' to
> > 'CGAL::Cartesian_base_no_ref_count<FT_,Kernel_>::FT'
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > and
> > [
> > FT_=CORE::Expr,
> > Kernel_=CGAL::Simple_cartesian<CORE::Expr>
> > ]
> > No constructor could take the source type, or constructor
> > overload resolution was ambiguous
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(323):
> > error C2440: 'type cast' : cannot convert from
> > 'std::allocator<_Ty>::value_type' to
> > 'CGAL::Cartesian_base_no_ref_count<FT_,Kernel_>::FT'
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > and
> > [
> > FT_=CORE::Expr,
> > Kernel_=CGAL::Simple_cartesian<CORE::Expr>
> > ]
> > No constructor could take the source type, or constructor
> > overload resolution was ambiguous
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(324):
> > error C2440: 'type cast' : cannot convert from
> > 'std::allocator<_Ty>::value_type' to
> > 'CGAL::Cartesian_base_no_ref_count<FT_,Kernel_>::FT'
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > and
> > [
> > FT_=CORE::Expr,
> > Kernel_=CGAL::Simple_cartesian<CORE::Expr>
> > ]
> > No constructor could take the source type, or constructor
> > overload resolution was ambiguous
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(324):
> > error C2440: 'type cast' : cannot convert from
> > 'std::allocator<_Ty>::value_type' to
> > 'CGAL::Cartesian_base_no_ref_count<FT_,Kernel_>::FT'
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > and
> > [
> > FT_=CORE::Expr,
> > Kernel_=CGAL::Simple_cartesian<CORE::Expr>
> > ]
> > No constructor could take the source type, or constructor
> > overload resolution was ambiguous
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(306):
> > error C2676: binary '*=' : 'std::allocator<_Ty>::value_type' does not
> > define this operator or a conversion to a type acceptable to the
> > predefined operator
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(307):
> > error C2676: binary '*=' : 'std::allocator<_Ty>::value_type' does not
> > define this operator or a conversion to a type acceptable to the
> > predefined operator
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(308):
> > error C2676: binary '*=' : 'std::allocator<_Ty>::value_type' does not
> > define this operator or a conversion to a type acceptable to the
> > predefined operator
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(309):
> > error C2676: binary '*=' : 'std::allocator<_Ty>::value_type' does not
> > define this operator or a conversion to a type acceptable to the
> > predefined operator
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(311):
> > error C2676: binary '*=' : 'std::allocator<_Ty>::value_type' does not
> > define this operator or a conversion to a type acceptable to the
> > predefined operator
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(312):
> > error C2676: binary '*=' : 'std::allocator<_Ty>::value_type' does not
> > define this operator or a conversion to a type acceptable to the
> > predefined operator
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(313):
> > error C2676: binary '*=' : 'std::allocator<_Ty>::value_type' does not
> > define this operator or a conversion to a type acceptable to the
> > predefined operator
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(314):
> > error C2676: binary '*=' : 'std::allocator<_Ty>::value_type' does not
> > define this operator or a conversion to a type acceptable to the
> > predefined operator
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(316):
> > error C2676: binary '*=' : 'std::allocator<_Ty>::value_type' does not
> > define this operator or a conversion to a type acceptable to the
> > predefined operator
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(317):
> > error C2676: binary '*=' : 'std::allocator<_Ty>::value_type' does not
> > define this operator or a conversion to a type acceptable to the
> > predefined operator
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(318):
> > error C2676: binary '*=' : 'std::allocator<_Ty>::value_type' does not
> > define this operator or a conversion to a type acceptable to the
> > predefined operator
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Nef_S2\Normalizing.h(319):
> > error C2676: binary '*=' : 'std::allocator<_Ty>::value_type' does not
> > define this operator or a conversion to a type acceptable to the
> > predefined operator
> > with
> > [
> > _Ty=CGAL::Fraction_traits<FT>::Numerator_type
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\float.h(133): warning C4244:
> > 'return' : conversion from 'double' to
> > 'CGAL::Algebraic_structure_traits_base<Type,Algebra_type>::Type',
> > possible loss of data
> > with
> > [
> > Type=float,
> > Algebra_type=CGAL::Field_with_kth_root_tag
> > ]
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Handle.h(85): warning C4311:
> > 'reinterpret_cast' : pointer truncation from 'CGAL::Rep *const ' to
> > 'unsigned long'
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Handle.h(90): warning C4311:
> > 'reinterpret_cast' : pointer truncation from 'CGAL::Rep *const ' to
> > 'unsigned long'
> > C:\Program Files\CGAL-3.3.1\include\CGAL\Handle.h(91): warning C4311:
> > 'reinterpret_cast' : pointer truncation from 'CGAL::Rep *const ' to
> > 'unsigned long'
> > C:\Program Files\Microsoft Visual Studio .NET
> > 2003\Vc7\include\xtree(484): warning C4800: 'int' : forcing value to
> > bool 'true' or 'false' (performance warning)
> > C:\Program Files\Microsoft Visual Studio .NET
> > 2003\Vc7\include\xtree(484): warning C4800: 'int' : forcing value to
> > bool 'true' or 'false' (performance warning)
> >
> >
> >
> >
>
--
You are currently subscribed to cgal-discuss.
To unsubscribe or access the archives, go to
https://lists-sop.inria.fr/wws/info/cgal-discuss
OFF
614 1224 0
0.0302124 -0.171021 -0.9848
0.0593872 -0.336792 -0.9397
0.0869141 -0.492371 -0.866
0.111694 -0.632996 -0.766
0.133118 -0.754395 -0.6428
0.150391 -0.852783 -0.5
0.163208 -0.925415 -0.342
0.171082 -0.969788 -0.1736
0.173706 -0.984802 0
0.171082 -0.969788 0.1736
0.163208 -0.925415 0.342
0.150391 -0.852783 0.5
0.133118 -0.754395 0.6428
0.111694 -0.632996 0.766
0.0869141 -0.492371 0.866
0.0593872 -0.336792 0.9397
0.0302124 -0.171021 0.9848
0.0593872 -0.163208 -0.9848
0.117004 -0.321411 -0.9397
0.171082 -0.469788 -0.866
0.21991 -0.604004 -0.766
0.262085 -0.719788 -0.6428
0.296204 -0.813782 -0.5
0.321411 -0.882996 -0.342
0.336914 -0.925415 -0.1736
0.342102 -0.939697 0
0.336914 -0.925415 0.1736
0.321411 -0.882996 0.342
0.296204 -0.813782 0.5
0.262085 -0.719788 0.6428
0.21991 -0.604004 0.766
0.171082 -0.469788 0.866
0.117004 -0.321411 0.9397
0.0593872 -0.163208 0.9848
0.0869141 -0.150391 -0.9848
0.171082 -0.296204 -0.9397
0.25 -0.432983 -0.866
0.321411 -0.55658 -0.766
0.383118 -0.663391 -0.6428
0.433105 -0.75 -0.5
0.46991 -0.813782 -0.342
0.492493 -0.852783 -0.1736
0.5 -0.866028 0
0.492493 -0.852783 0.1736
0.46991 -0.813782 0.342
0.433105 -0.75 0.5
0.383118 -0.663391 0.6428
0.321411 -0.55658 0.766
0.25 -0.432983 0.866
0.171082 -0.296204 0.9397
0.0869141 -0.150391 0.9848
0.111694 -0.132996 -0.9848
0.21991 -0.262024 -0.9397
0.321411 -0.382996 -0.866
0.413208 -0.492371 -0.766
0.492493 -0.586792 -0.6428
0.556702 -0.663391 -0.5
0.604126 -0.719788 -0.342
0.633118 -0.754395 -0.1736
0.642822 -0.765991 0
0.633118 -0.754395 0.1736
0.604126 -0.719788 0.342
0.556702 -0.663391 0.5
0.492493 -0.586792 0.6428
0.413208 -0.492371 0.766
0.321411 -0.382996 0.866
0.21991 -0.262024 0.9397
0.111694 -0.132996 0.9848
0.133118 -0.111572 -0.9848
0.262085 -0.219788 -0.9397
0.383118 -0.321411 -0.866
0.492493 -0.413208 -0.766
0.586914 -0.492371 -0.6428
0.663513 -0.55658 -0.5
0.71991 -0.604004 -0.342
0.754517 -0.632996 -0.1736
0.766113 -0.642822 0
0.754517 -0.632996 0.1736
0.71991 -0.604004 0.342
0.663513 -0.55658 0.5
0.586914 -0.492371 0.6428
0.492493 -0.413208 0.766
0.383118 -0.321411 0.866
0.262085 -0.219788 0.9397
0.133118 -0.111572 0.9848
0.150391 -0.086792 -0.9848
0.296204 -0.171021 -0.9397
0.433105 -0.25 -0.866
0.556702 -0.321411 -0.766
0.663513 -0.382996 -0.6428
0.75 -0.432983 -0.5
0.813782 -0.469788 -0.342
0.852905 -0.492371 -0.1736
0.866089 -0.5 0
0.852905 -0.492371 0.1736
0.813782 -0.469788 0.342
0.75 -0.432983 0.5
0.663513 -0.382996 0.6428
0.556702 -0.321411 0.766
0.433105 -0.25 0.866
0.296204 -0.171021 0.9397
0.150391 -0.086792 0.9848
0.163208 -0.0593872 -0.9848
0.321411 -0.117004 -0.9397
0.46991 -0.171021 -0.866
0.604126 -0.219788 -0.766
0.71991 -0.262024 -0.6428
0.813782 -0.296204 -0.5
0.883118 -0.321411 -0.342
0.925476 -0.336792 -0.1736
0.939697 -0.34198 0
0.925476 -0.336792 0.1736
0.883118 -0.321411 0.342
0.813782 -0.296204 0.5
0.71991 -0.262024 0.6428
0.604126 -0.219788 0.766
0.46991 -0.171021 0.866
0.321411 -0.117004 0.9397
0.163208 -0.0593872 0.9848
0.171082 -0.0300903 -0.9848
0.336914 -0.0593872 -0.9397
0.492493 -0.086792 -0.866
0.633118 -0.111572 -0.766
0.754517 -0.132996 -0.6428
0.852905 -0.150391 -0.5
0.925476 -0.163208 -0.342
0.96991 -0.171021 -0.1736
0.984924 -0.173584 0
0.96991 -0.171021 0.1736
0.925476 -0.163208 0.342
0.852905 -0.150391 0.5
0.754517 -0.132996 0.6428
0.633118 -0.111572 0.766
0.492493 -0.086792 0.866
0.336914 -0.0593872 0.9397
0.171082 -0.0300903 0.9848
0.173706 0 -0.9848
0.342102 0 -0.9397
0.5 0 -0.866
0.642822 0 -0.766
0.766113 0 -0.6428
0.866089 0 -0.5
0.939697 0 -0.342
0.984924 0 -0.1736
1 0 0
0.984924 0 0.1736
0.939697 0 0.342
0.866089 0 0.5
0.766113 0 0.6428
0.642822 0 0.766
0.5 0 0.866
0.342102 0 0.9397
0.173706 0 0.9848
0.171082 0.0302124 -0.9848
0.336914 0.0593872 -0.9397
0.492493 0.0869141 -0.866
0.633118 0.111694 -0.766
0.754517 0.133118 -0.6428
0.852905 0.150391 -0.5
0.925476 0.163208 -0.342
0.96991 0.171082 -0.1736
0.984924 0.173706 0
0.96991 0.171082 0.1736
0.925476 0.163208 0.342
0.852905 0.150391 0.5
0.754517 0.133118 0.6428
0.633118 0.111694 0.766
0.492493 0.0869141 0.866
0.336914 0.0593872 0.9397
0.171082 0.0302124 0.9848
0.163208 0.0593872 -0.9848
0.321411 0.117004 -0.9397
0.46991 0.171082 -0.866
0.604126 0.21991 -0.766
0.71991 0.262085 -0.6428
0.813782 0.296204 -0.5
0.883118 0.321411 -0.342
0.925476 0.336914 -0.1736
0.939697 0.342102 0
0.925476 0.336914 0.1736
0.883118 0.321411 0.342
0.813782 0.296204 0.5
0.71991 0.262085 0.6428
0.604126 0.21991 0.766
0.46991 0.171082 0.866
0.321411 0.117004 0.9397
0.163208 0.0593872 0.9848
0.150391 0.0869141 -0.9848
0.296204 0.171082 -0.9397
0.433105 0.25 -0.866
0.556702 0.321411 -0.766
0.663513 0.383118 -0.6428
0.75 0.433105 -0.5
0.813782 0.46991 -0.342
0.852905 0.492493 -0.1736
0.866089 0.5 0
0.852905 0.492493 0.1736
0.813782 0.46991 0.342
0.75 0.433105 0.5
0.663513 0.383118 0.6428
0.556702 0.321411 0.766
0.433105 0.25 0.866
0.296204 0.171082 0.9397
0.150391 0.0869141 0.9848
0.133118 0.111694 -0.9848
0.262085 0.21991 -0.9397
0.383118 0.321411 -0.866
0.492493 0.413208 -0.766
0.586914 0.492493 -0.6428
0.663513 0.556702 -0.5
0.71991 0.604126 -0.342
0.754517 0.633118 -0.1736
0.766113 0.642822 0
0.754517 0.633118 0.1736
0.71991 0.604126 0.342
0.663513 0.556702 0.5
0.586914 0.492493 0.6428
0.492493 0.413208 0.766
0.383118 0.321411 0.866
0.262085 0.21991 0.9397
0.133118 0.111694 0.9848
0.111694 0.133118 -0.9848
0.21991 0.262085 -0.9397
0.321411 0.383118 -0.866
0.413208 0.492493 -0.766
0.492493 0.586914 -0.6428
0.556702 0.663513 -0.5
0.604126 0.71991 -0.342
0.633118 0.754517 -0.1736
0.642822 0.766113 0
0.633118 0.754517 0.1736
0.604126 0.71991 0.342
0.556702 0.663513 0.5
0.492493 0.586914 0.6428
0.413208 0.492493 0.766
0.321411 0.383118 0.866
0.21991 0.262085 0.9397
0.111694 0.133118 0.9848
0.0869141 0.150391 -0.9848
0.171082 0.296204 -0.9397
0.25 0.433105 -0.866
0.321411 0.556702 -0.766
0.383118 0.663513 -0.6428
0.433105 0.75 -0.5
0.46991 0.813782 -0.342
0.492493 0.852905 -0.1736
0.5 0.866089 0
0.492493 0.852905 0.1736
0.46991 0.813782 0.342
0.433105 0.75 0.5
0.383118 0.663513 0.6428
0.321411 0.556702 0.766
0.25 0.433105 0.866
0.171082 0.296204 0.9397
0.0869141 0.150391 0.9848
0.0593872 0.163208 -0.9848
0.117004 0.321411 -0.9397
0.171082 0.46991 -0.866
0.21991 0.604126 -0.766
0.262085 0.71991 -0.6428
0.296204 0.813782 -0.5
0.321411 0.883118 -0.342
0.336914 0.925476 -0.1736
0.342102 0.939697 0
0.336914 0.925476 0.1736
0.321411 0.883118 0.342
0.296204 0.813782 0.5
0.262085 0.71991 0.6428
0.21991 0.604126 0.766
0.171082 0.46991 0.866
0.117004 0.321411 0.9397
0.0593872 0.163208 0.9848
0.0302124 0.171082 -0.9848
0.0593872 0.336914 -0.9397
0.0869141 0.492493 -0.866
0.111694 0.633118 -0.766
0.133118 0.754517 -0.6428
0.150391 0.852905 -0.5
0.163208 0.925476 -0.342
0.171082 0.96991 -0.1736
0.173706 0.984924 0
0.171082 0.96991 0.1736
0.163208 0.925476 0.342
0.150391 0.852905 0.5
0.133118 0.754517 0.6428
0.111694 0.633118 0.766
0.0869141 0.492493 0.866
0.0593872 0.336914 0.9397
0.0302124 0.171082 0.9848
0 0.173706 -0.9848
0 0.342102 -0.9397
0 0.5 -0.866
0 0.642822 -0.766
0 0.766113 -0.6428
0 0.866089 -0.5
0 0.939697 -0.342
0 0.984924 -0.1736
0 1 0
0 0.984924 0.1736
0 0.939697 0.342
0 0.866089 0.5
0 0.766113 0.6428
0 0.642822 0.766
0 0.5 0.866
0 0.342102 0.9397
0 0.173706 0.9848
-0.0300903 0.171082 -0.9848
-0.0593872 0.336914 -0.9397
-0.086792 0.492493 -0.866
-0.111572 0.633118 -0.766
-0.132996 0.754517 -0.6428
-0.150391 0.852905 -0.5
-0.163208 0.925476 -0.342
-0.171021 0.96991 -0.1736
-0.173584 0.984924 0
-0.171021 0.96991 0.1736
-0.163208 0.925476 0.342
-0.150391 0.852905 0.5
-0.132996 0.754517 0.6428
-0.111572 0.633118 0.766
-0.086792 0.492493 0.866
-0.0593872 0.336914 0.9397
-0.0300903 0.171082 0.9848
-0.0593872 0.163208 -0.9848
-0.117004 0.321411 -0.9397
-0.171021 0.46991 -0.866
-0.219788 0.604126 -0.766
-0.262024 0.71991 -0.6428
-0.296204 0.813782 -0.5
-0.321411 0.883118 -0.342
-0.336792 0.925476 -0.1736
-0.34198 0.939697 0
-0.336792 0.925476 0.1736
-0.321411 0.883118 0.342
-0.296204 0.813782 0.5
-0.262024 0.71991 0.6428
-0.219788 0.604126 0.766
-0.171021 0.46991 0.866
-0.117004 0.321411 0.9397
-0.0593872 0.163208 0.9848
-0.086792 0.150391 -0.9848
-0.171021 0.296204 -0.9397
-0.25 0.433105 -0.866
-0.321411 0.556702 -0.766
-0.382996 0.663513 -0.6428
-0.432983 0.75 -0.5
-0.469788 0.813782 -0.342
-0.492371 0.852905 -0.1736
-0.5 0.866089 0
-0.492371 0.852905 0.1736
-0.469788 0.813782 0.342
-0.432983 0.75 0.5
-0.382996 0.663513 0.6428
-0.321411 0.556702 0.766
-0.25 0.433105 0.866
-0.171021 0.296204 0.9397
-0.086792 0.150391 0.9848
-0.111572 0.133118 -0.9848
-0.219788 0.262085 -0.9397
-0.321411 0.383118 -0.866
-0.413208 0.492493 -0.766
-0.492371 0.586914 -0.6428
-0.55658 0.663513 -0.5
-0.604004 0.71991 -0.342
-0.632996 0.754517 -0.1736
-0.642822 0.766113 0
-0.632996 0.754517 0.1736
-0.604004 0.71991 0.342
-0.55658 0.663513 0.5
-0.492371 0.586914 0.6428
-0.413208 0.492493 0.766
-0.321411 0.383118 0.866
-0.219788 0.262085 0.9397
-0.111572 0.133118 0.9848
-0.132996 0.111694 -0.9848
-0.262024 0.21991 -0.9397
-0.382996 0.321411 -0.866
-0.492371 0.413208 -0.766
-0.586792 0.492493 -0.6428
-0.663391 0.556702 -0.5
-0.719788 0.604126 -0.342
-0.754395 0.633118 -0.1736
-0.765991 0.642822 0
-0.754395 0.633118 0.1736
-0.719788 0.604126 0.342
-0.663391 0.556702 0.5
-0.586792 0.492493 0.6428
-0.492371 0.413208 0.766
-0.382996 0.321411 0.866
-0.262024 0.21991 0.9397
-0.132996 0.111694 0.9848
-0.150391 0.0869141 -0.9848
-0.296204 0.171082 -0.9397
-0.432983 0.25 -0.866
-0.55658 0.321411 -0.766
-0.663391 0.383118 -0.6428
-0.75 0.433105 -0.5
-0.813782 0.46991 -0.342
-0.852783 0.492493 -0.1736
-0.866028 0.5 0
-0.852783 0.492493 0.1736
-0.813782 0.46991 0.342
-0.75 0.433105 0.5
-0.663391 0.383118 0.6428
-0.55658 0.321411 0.766
-0.432983 0.25 0.866
-0.296204 0.171082 0.9397
-0.150391 0.0869141 0.9848
-0.163208 0.0593872 -0.9848
-0.321411 0.117004 -0.9397
-0.469788 0.171082 -0.866
-0.604004 0.21991 -0.766
-0.719788 0.262085 -0.6428
-0.813782 0.296204 -0.5
-0.882996 0.321411 -0.342
-0.925415 0.336914 -0.1736
-0.939697 0.342102 0
-0.925415 0.336914 0.1736
-0.882996 0.321411 0.342
-0.813782 0.296204 0.5
-0.719788 0.262085 0.6428
-0.604004 0.21991 0.766
-0.469788 0.171082 0.866
-0.321411 0.117004 0.9397
-0.163208 0.0593872 0.9848
-0.171021 0.0302124 -0.9848
-0.336792 0.0593872 -0.9397
-0.492371 0.0869141 -0.866
-0.632996 0.111694 -0.766
-0.754395 0.133118 -0.6428
-0.852783 0.150391 -0.5
-0.925415 0.163208 -0.342
-0.969788 0.171082 -0.1736
-0.984802 0.173706 0
-0.969788 0.171082 0.1736
-0.925415 0.163208 0.342
-0.852783 0.150391 0.5
-0.754395 0.133118 0.6428
-0.632996 0.111694 0.766
-0.492371 0.0869141 0.866
-0.336792 0.0593872 0.9397
-0.171021 0.0302124 0.9848
-0.173584 0 -0.9848
-0.34198 0 -0.9397
-0.5 0 -0.866
-0.642822 0 -0.766
-0.765991 0 -0.6428
-0.866028 0 -0.5
-0.939697 0 -0.342
-0.984802 0 -0.1736
-1 0 0
-0.984802 0 0.1736
-0.939697 0 0.342
-0.866028 0 0.5
-0.765991 0 0.6428
-0.642822 0 0.766
-0.5 0 0.866
-0.34198 0 0.9397
-0.173584 0 0.9848
-0.171021 -0.0300903 -0.9848
-0.336792 -0.0593872 -0.9397
-0.492371 -0.086792 -0.866
-0.632996 -0.111572 -0.766
-0.754395 -0.132996 -0.6428
-0.852783 -0.150391 -0.5
-0.925415 -0.163208 -0.342
-0.969788 -0.171021 -0.1736
-0.984802 -0.173584 0
-0.969788 -0.171021 0.1736
-0.925415 -0.163208 0.342
-0.852783 -0.150391 0.5
-0.754395 -0.132996 0.6428
-0.632996 -0.111572 0.766
-0.492371 -0.086792 0.866
-0.336792 -0.0593872 0.9397
-0.171021 -0.0300903 0.9848
-0.163208 -0.0593872 -0.9848
-0.321411 -0.117004 -0.9397
-0.469788 -0.171021 -0.866
-0.604004 -0.219788 -0.766
-0.719788 -0.262024 -0.6428
-0.813782 -0.296204 -0.5
-0.882996 -0.321411 -0.342
-0.925415 -0.336792 -0.1736
-0.939697 -0.34198 0
-0.925415 -0.336792 0.1736
-0.882996 -0.321411 0.342
-0.813782 -0.296204 0.5
-0.719788 -0.262024 0.6428
-0.604004 -0.219788 0.766
-0.469788 -0.171021 0.866
-0.321411 -0.117004 0.9397
-0.163208 -0.0593872 0.9848
-0.150391 -0.086792 -0.9848
-0.296204 -0.171021 -0.9397
-0.432983 -0.25 -0.866
-0.55658 -0.321411 -0.766
-0.663391 -0.382996 -0.6428
-0.75 -0.432983 -0.5
-0.813782 -0.469788 -0.342
-0.852783 -0.492371 -0.1736
-0.866028 -0.5 0
-0.852783 -0.492371 0.1736
-0.813782 -0.469788 0.342
-0.75 -0.432983 0.5
-0.663391 -0.382996 0.6428
-0.55658 -0.321411 0.766
-0.432983 -0.25 0.866
-0.296204 -0.171021 0.9397
-0.150391 -0.086792 0.9848
-0.132996 -0.111572 -0.9848
-0.262024 -0.219788 -0.9397
-0.382996 -0.321411 -0.866
-0.492371 -0.413208 -0.766
-0.586792 -0.492371 -0.6428
-0.663391 -0.55658 -0.5
-0.719788 -0.604004 -0.342
-0.754395 -0.632996 -0.1736
-0.765991 -0.642822 0
-0.754395 -0.632996 0.1736
-0.719788 -0.604004 0.342
-0.663391 -0.55658 0.5
-0.586792 -0.492371 0.6428
-0.492371 -0.413208 0.766
-0.382996 -0.321411 0.866
-0.262024 -0.219788 0.9397
-0.132996 -0.111572 0.9848
-0.111572 -0.132996 -0.9848
-0.219788 -0.262024 -0.9397
-0.321411 -0.382996 -0.866
-0.413208 -0.492371 -0.766
-0.492371 -0.586792 -0.6428
-0.55658 -0.663391 -0.5
-0.604004 -0.719788 -0.342
-0.632996 -0.754395 -0.1736
-0.642822 -0.765991 0
-0.632996 -0.754395 0.1736
-0.604004 -0.719788 0.342
-0.55658 -0.663391 0.5
-0.492371 -0.586792 0.6428
-0.413208 -0.492371 0.766
-0.321411 -0.382996 0.866
-0.219788 -0.262024 0.9397
-0.111572 -0.132996 0.9848
-0.086792 -0.150391 -0.9848
-0.171021 -0.296204 -0.9397
-0.25 -0.432983 -0.866
-0.321411 -0.55658 -0.766
-0.382996 -0.663391 -0.6428
-0.432983 -0.75 -0.5
-0.469788 -0.813782 -0.342
-0.492371 -0.852783 -0.1736
-0.5 -0.866028 0
-0.492371 -0.852783 0.1736
-0.469788 -0.813782 0.342
-0.432983 -0.75 0.5
-0.382996 -0.663391 0.6428
-0.321411 -0.55658 0.766
-0.25 -0.432983 0.866
-0.171021 -0.296204 0.9397
-0.086792 -0.150391 0.9848
0 0 -1
-0.0593872 -0.163208 -0.9848
-0.117004 -0.321411 -0.9397
-0.171021 -0.469788 -0.866
-0.219788 -0.604004 -0.766
-0.262024 -0.719788 -0.6428
-0.296204 -0.813782 -0.5
-0.321411 -0.882996 -0.342
-0.336792 -0.925415 -0.1736
-0.34198 -0.939697 0
-0.336792 -0.925415 0.1736
-0.321411 -0.882996 0.342
-0.296204 -0.813782 0.5
-0.262024 -0.719788 0.6428
-0.219788 -0.604004 0.766
-0.171021 -0.469788 0.866
-0.117004 -0.321411 0.9397
-0.0593872 -0.163208 0.9848
0 0 1
-0.0300903 -0.171021 -0.9848
0 -0.173584 -0.9848
-0.0593872 -0.336792 -0.9397
0 -0.34198 -0.9397
-0.086792 -0.492371 -0.866
0 -0.5 -0.866
-0.111572 -0.632996 -0.766
0 -0.642822 -0.766
-0.132996 -0.754395 -0.6428
0 -0.765991 -0.6428
-0.150391 -0.852783 -0.5
0 -0.866028 -0.5
-0.163208 -0.925415 -0.342
0 -0.939697 -0.342
-0.171021 -0.969788 -0.1736
0 -0.984802 -0.1736
-0.173584 -0.984802 0
0 -1 0
-0.171021 -0.969788 0.1736
0 -0.984802 0.1736
-0.163208 -0.925415 0.342
0 -0.939697 0.342
-0.150391 -0.852783 0.5
0 -0.866028 0.5
-0.132996 -0.754395 0.6428
0 -0.765991 0.6428
-0.111572 -0.632996 0.766
0 -0.642822 0.766
-0.086792 -0.492371 0.866
0 -0.5 0.866
-0.0593872 -0.336792 0.9397
0 -0.34198 0.9397
-0.0300903 -0.171021 0.9848
0 -0.173584 0.9848
3 561 581 0
3 583 0 581
3 0 583 1
3 585 1 583
3 1 585 2
3 587 2 585
3 2 587 3
3 589 3 587
3 3 589 4
3 591 4 589
3 4 591 5
3 593 5 591
3 5 593 6
3 595 6 593
3 6 595 7
3 597 7 595
3 7 597 8
3 599 8 597
3 8 599 9
3 601 9 599
3 9 601 10
3 603 10 601
3 10 603 11
3 605 11 603
3 11 605 12
3 607 12 605
3 12 607 13
3 609 13 607
3 13 609 14
3 611 14 609
3 14 611 15
3 613 15 611
3 15 613 16
3 16 613 579
3 561 0 17
3 0 1 17
3 17 1 18
3 1 2 18
3 18 2 19
3 2 3 19
3 19 3 20
3 3 4 20
3 20 4 21
3 4 5 21
3 21 5 22
3 5 6 22
3 22 6 23
3 6 7 23
3 23 7 24
3 7 8 24
3 24 8 25
3 8 9 25
3 25 9 26
3 9 10 26
3 26 10 27
3 10 11 27
3 27 11 28
3 11 12 28
3 28 12 29
3 12 13 29
3 29 13 30
3 13 14 30
3 30 14 31
3 14 15 31
3 31 15 32
3 15 16 32
3 32 16 33
3 33 16 579
3 561 17 34
3 17 18 34
3 34 18 35
3 18 19 35
3 35 19 36
3 19 20 36
3 36 20 37
3 20 21 37
3 37 21 38
3 21 22 38
3 38 22 39
3 22 23 39
3 39 23 40
3 23 24 40
3 40 24 41
3 24 25 41
3 41 25 42
3 25 26 42
3 42 26 43
3 26 27 43
3 43 27 44
3 27 28 44
3 44 28 45
3 28 29 45
3 45 29 46
3 29 30 46
3 46 30 47
3 30 31 47
3 47 31 48
3 31 32 48
3 48 32 49
3 32 33 49
3 49 33 50
3 50 33 579
3 561 34 51
3 34 35 51
3 51 35 52
3 35 36 52
3 52 36 53
3 36 37 53
3 53 37 54
3 37 38 54
3 54 38 55
3 38 39 55
3 55 39 56
3 39 40 56
3 56 40 57
3 40 41 57
3 57 41 58
3 41 42 58
3 58 42 59
3 42 43 59
3 59 43 60
3 43 44 60
3 60 44 61
3 44 45 61
3 61 45 62
3 45 46 62
3 62 46 63
3 46 47 63
3 63 47 64
3 47 48 64
3 64 48 65
3 48 49 65
3 65 49 66
3 49 50 66
3 66 50 67
3 67 50 579
3 561 51 68
3 51 52 68
3 68 52 69
3 52 53 69
3 69 53 70
3 53 54 70
3 70 54 71
3 54 55 71
3 71 55 72
3 55 56 72
3 72 56 73
3 56 57 73
3 73 57 74
3 57 58 74
3 74 58 75
3 58 59 75
3 75 59 76
3 59 60 76
3 76 60 77
3 60 61 77
3 77 61 78
3 61 62 78
3 78 62 79
3 62 63 79
3 79 63 80
3 63 64 80
3 80 64 81
3 64 65 81
3 81 65 82
3 65 66 82
3 82 66 83
3 66 67 83
3 83 67 84
3 84 67 579
3 561 68 85
3 68 69 85
3 85 69 86
3 69 70 86
3 86 70 87
3 70 71 87
3 87 71 88
3 71 72 88
3 88 72 89
3 72 73 89
3 89 73 90
3 73 74 90
3 90 74 91
3 74 75 91
3 91 75 92
3 75 76 92
3 92 76 93
3 76 77 93
3 93 77 94
3 77 78 94
3 94 78 95
3 78 79 95
3 95 79 96
3 79 80 96
3 96 80 97
3 80 81 97
3 97 81 98
3 81 82 98
3 98 82 99
3 82 83 99
3 99 83 100
3 83 84 100
3 100 84 101
3 101 84 579
3 561 85 102
3 85 86 102
3 102 86 103
3 86 87 103
3 103 87 104
3 87 88 104
3 104 88 105
3 88 89 105
3 105 89 106
3 89 90 106
3 106 90 107
3 90 91 107
3 107 91 108
3 91 92 108
3 108 92 109
3 92 93 109
3 109 93 110
3 93 94 110
3 110 94 111
3 94 95 111
3 111 95 112
3 95 96 112
3 112 96 113
3 96 97 113
3 113 97 114
3 97 98 114
3 114 98 115
3 98 99 115
3 115 99 116
3 99 100 116
3 116 100 117
3 100 101 117
3 117 101 118
3 118 101 579
3 561 102 119
3 102 103 119
3 119 103 120
3 103 104 120
3 120 104 121
3 104 105 121
3 121 105 122
3 105 106 122
3 122 106 123
3 106 107 123
3 123 107 124
3 107 108 124
3 124 108 125
3 108 109 125
3 125 109 126
3 109 110 126
3 126 110 127
3 110 111 127
3 127 111 128
3 111 112 128
3 128 112 129
3 112 113 129
3 129 113 130
3 113 114 130
3 130 114 131
3 114 115 131
3 131 115 132
3 115 116 132
3 132 116 133
3 116 117 133
3 133 117 134
3 117 118 134
3 134 118 135
3 135 118 579
3 561 119 136
3 119 120 136
3 136 120 137
3 120 121 137
3 137 121 138
3 121 122 138
3 138 122 139
3 122 123 139
3 139 123 140
3 123 124 140
3 140 124 141
3 124 125 141
3 141 125 142
3 125 126 142
3 142 126 143
3 126 127 143
3 143 127 144
3 127 128 144
3 144 128 145
3 128 129 145
3 145 129 146
3 129 130 146
3 146 130 147
3 130 131 147
3 147 131 148
3 131 132 148
3 148 132 149
3 132 133 149
3 149 133 150
3 133 134 150
3 150 134 151
3 134 135 151
3 151 135 152
3 152 135 579
3 561 136 153
3 136 137 153
3 153 137 154
3 137 138 154
3 154 138 155
3 138 139 155
3 155 139 156
3 139 140 156
3 156 140 157
3 140 141 157
3 157 141 158
3 141 142 158
3 158 142 159
3 142 143 159
3 159 143 160
3 143 144 160
3 160 144 161
3 144 145 161
3 161 145 162
3 145 146 162
3 162 146 163
3 146 147 163
3 163 147 164
3 147 148 164
3 164 148 165
3 148 149 165
3 165 149 166
3 149 150 166
3 166 150 167
3 150 151 167
3 167 151 168
3 151 152 168
3 168 152 169
3 169 152 579
3 561 153 170
3 153 154 170
3 170 154 171
3 154 155 171
3 171 155 172
3 155 156 172
3 172 156 173
3 156 157 173
3 173 157 174
3 157 158 174
3 174 158 175
3 158 159 175
3 175 159 176
3 159 160 176
3 176 160 177
3 160 161 177
3 177 161 178
3 161 162 178
3 178 162 179
3 162 163 179
3 179 163 180
3 163 164 180
3 180 164 181
3 164 165 181
3 181 165 182
3 165 166 182
3 182 166 183
3 166 167 183
3 183 167 184
3 167 168 184
3 184 168 185
3 168 169 185
3 185 169 186
3 186 169 579
3 561 170 187
3 170 171 187
3 187 171 188
3 171 172 188
3 188 172 189
3 172 173 189
3 189 173 190
3 173 174 190
3 190 174 191
3 174 175 191
3 191 175 192
3 175 176 192
3 192 176 193
3 176 177 193
3 193 177 194
3 177 178 194
3 194 178 195
3 178 179 195
3 195 179 196
3 179 180 196
3 196 180 197
3 180 181 197
3 197 181 198
3 181 182 198
3 198 182 199
3 182 183 199
3 199 183 200
3 183 184 200
3 200 184 201
3 184 185 201
3 201 185 202
3 185 186 202
3 202 186 203
3 203 186 579
3 561 187 204
3 187 188 204
3 204 188 205
3 188 189 205
3 205 189 206
3 189 190 206
3 206 190 207
3 190 191 207
3 207 191 208
3 191 192 208
3 208 192 209
3 192 193 209
3 209 193 210
3 193 194 210
3 210 194 211
3 194 195 211
3 211 195 212
3 195 196 212
3 212 196 213
3 196 197 213
3 213 197 214
3 197 198 214
3 214 198 215
3 198 199 215
3 215 199 216
3 199 200 216
3 216 200 217
3 200 201 217
3 217 201 218
3 201 202 218
3 218 202 219
3 202 203 219
3 219 203 220
3 220 203 579
3 561 204 221
3 204 205 221
3 221 205 222
3 205 206 222
3 222 206 223
3 206 207 223
3 223 207 224
3 207 208 224
3 224 208 225
3 208 209 225
3 225 209 226
3 209 210 226
3 226 210 227
3 210 211 227
3 227 211 228
3 211 212 228
3 228 212 229
3 212 213 229
3 229 213 230
3 213 214 230
3 230 214 231
3 214 215 231
3 231 215 232
3 215 216 232
3 232 216 233
3 216 217 233
3 233 217 234
3 217 218 234
3 234 218 235
3 218 219 235
3 235 219 236
3 219 220 236
3 236 220 237
3 237 220 579
3 561 221 238
3 221 222 238
3 238 222 239
3 222 223 239
3 239 223 240
3 223 224 240
3 240 224 241
3 224 225 241
3 241 225 242
3 225 226 242
3 242 226 243
3 226 227 243
3 243 227 244
3 227 228 244
3 244 228 245
3 228 229 245
3 245 229 246
3 229 230 246
3 246 230 247
3 230 231 247
3 247 231 248
3 231 232 248
3 248 232 249
3 232 233 249
3 249 233 250
3 233 234 250
3 250 234 251
3 234 235 251
3 251 235 252
3 235 236 252
3 252 236 253
3 236 237 253
3 253 237 254
3 254 237 579
3 561 238 255
3 238 239 255
3 255 239 256
3 239 240 256
3 256 240 257
3 240 241 257
3 257 241 258
3 241 242 258
3 258 242 259
3 242 243 259
3 259 243 260
3 243 244 260
3 260 244 261
3 244 245 261
3 261 245 262
3 245 246 262
3 262 246 263
3 246 247 263
3 263 247 264
3 247 248 264
3 264 248 265
3 248 249 265
3 265 249 266
3 249 250 266
3 266 250 267
3 250 251 267
3 267 251 268
3 251 252 268
3 268 252 269
3 252 253 269
3 269 253 270
3 253 254 270
3 270 254 271
3 271 254 579
3 561 255 272
3 255 256 272
3 272 256 273
3 256 257 273
3 273 257 274
3 257 258 274
3 274 258 275
3 258 259 275
3 275 259 276
3 259 260 276
3 276 260 277
3 260 261 277
3 277 261 278
3 261 262 278
3 278 262 279
3 262 263 279
3 279 263 280
3 263 264 280
3 280 264 281
3 264 265 281
3 281 265 282
3 265 266 282
3 282 266 283
3 266 267 283
3 283 267 284
3 267 268 284
3 284 268 285
3 268 269 285
3 285 269 286
3 269 270 286
3 286 270 287
3 270 271 287
3 287 271 288
3 288 271 579
3 561 272 289
3 272 273 289
3 289 273 290
3 273 274 290
3 290 274 291
3 274 275 291
3 291 275 292
3 275 276 292
3 292 276 293
3 276 277 293
3 293 277 294
3 277 278 294
3 294 278 295
3 278 279 295
3 295 279 296
3 279 280 296
3 296 280 297
3 280 281 297
3 297 281 298
3 281 282 298
3 298 282 299
3 282 283 299
3 299 283 300
3 283 284 300
3 300 284 301
3 284 285 301
3 301 285 302
3 285 286 302
3 302 286 303
3 286 287 303
3 303 287 304
3 287 288 304
3 304 288 305
3 305 288 579
3 561 289 306
3 289 290 306
3 306 290 307
3 290 291 307
3 307 291 308
3 291 292 308
3 308 292 309
3 292 293 309
3 309 293 310
3 293 294 310
3 310 294 311
3 294 295 311
3 311 295 312
3 295 296 312
3 312 296 313
3 296 297 313
3 313 297 314
3 297 298 314
3 314 298 315
3 298 299 315
3 315 299 316
3 299 300 316
3 316 300 317
3 300 301 317
3 317 301 318
3 301 302 318
3 318 302 319
3 302 303 319
3 319 303 320
3 303 304 320
3 320 304 321
3 304 305 321
3 321 305 322
3 322 305 579
3 561 306 323
3 306 307 323
3 323 307 324
3 307 308 324
3 324 308 325
3 308 309 325
3 325 309 326
3 309 310 326
3 326 310 327
3 310 311 327
3 327 311 328
3 311 312 328
3 328 312 329
3 312 313 329
3 329 313 330
3 313 314 330
3 330 314 331
3 314 315 331
3 331 315 332
3 315 316 332
3 332 316 333
3 316 317 333
3 333 317 334
3 317 318 334
3 334 318 335
3 318 319 335
3 335 319 336
3 319 320 336
3 336 320 337
3 320 321 337
3 337 321 338
3 321 322 338
3 338 322 339
3 339 322 579
3 561 323 340
3 323 324 340
3 340 324 341
3 324 325 341
3 341 325 342
3 325 326 342
3 342 326 343
3 326 327 343
3 343 327 344
3 327 328 344
3 344 328 345
3 328 329 345
3 345 329 346
3 329 330 346
3 346 330 347
3 330 331 347
3 347 331 348
3 331 332 348
3 348 332 349
3 332 333 349
3 349 333 350
3 333 334 350
3 350 334 351
3 334 335 351
3 351 335 352
3 335 336 352
3 352 336 353
3 336 337 353
3 353 337 354
3 337 338 354
3 354 338 355
3 338 339 355
3 355 339 356
3 356 339 579
3 561 340 357
3 340 341 357
3 357 341 358
3 341 342 358
3 358 342 359
3 342 343 359
3 359 343 360
3 343 344 360
3 360 344 361
3 344 345 361
3 361 345 362
3 345 346 362
3 362 346 363
3 346 347 363
3 363 347 364
3 347 348 364
3 364 348 365
3 348 349 365
3 365 349 366
3 349 350 366
3 366 350 367
3 350 351 367
3 367 351 368
3 351 352 368
3 368 352 369
3 352 353 369
3 369 353 370
3 353 354 370
3 370 354 371
3 354 355 371
3 371 355 372
3 355 356 372
3 372 356 373
3 373 356 579
3 561 357 374
3 357 358 374
3 374 358 375
3 358 359 375
3 375 359 376
3 359 360 376
3 376 360 377
3 360 361 377
3 377 361 378
3 361 362 378
3 378 362 379
3 362 363 379
3 379 363 380
3 363 364 380
3 380 364 381
3 364 365 381
3 381 365 382
3 365 366 382
3 382 366 383
3 366 367 383
3 383 367 384
3 367 368 384
3 384 368 385
3 368 369 385
3 385 369 386
3 369 370 386
3 386 370 387
3 370 371 387
3 387 371 388
3 371 372 388
3 388 372 389
3 372 373 389
3 389 373 390
3 390 373 579
3 561 374 391
3 374 375 391
3 391 375 392
3 375 376 392
3 392 376 393
3 376 377 393
3 393 377 394
3 377 378 394
3 394 378 395
3 378 379 395
3 395 379 396
3 379 380 396
3 396 380 397
3 380 381 397
3 397 381 398
3 381 382 398
3 398 382 399
3 382 383 399
3 399 383 400
3 383 384 400
3 400 384 401
3 384 385 401
3 401 385 402
3 385 386 402
3 402 386 403
3 386 387 403
3 403 387 404
3 387 388 404
3 404 388 405
3 388 389 405
3 405 389 406
3 389 390 406
3 406 390 407
3 407 390 579
3 561 391 408
3 391 392 408
3 408 392 409
3 392 393 409
3 409 393 410
3 393 394 410
3 410 394 411
3 394 395 411
3 411 395 412
3 395 396 412
3 412 396 413
3 396 397 413
3 413 397 414
3 397 398 414
3 414 398 415
3 398 399 415
3 415 399 416
3 399 400 416
3 416 400 417
3 400 401 417
3 417 401 418
3 401 402 418
3 418 402 419
3 402 403 419
3 419 403 420
3 403 404 420
3 420 404 421
3 404 405 421
3 421 405 422
3 405 406 422
3 422 406 423
3 406 407 423
3 423 407 424
3 424 407 579
3 561 408 425
3 408 409 425
3 425 409 426
3 409 410 426
3 426 410 427
3 410 411 427
3 427 411 428
3 411 412 428
3 428 412 429
3 412 413 429
3 429 413 430
3 413 414 430
3 430 414 431
3 414 415 431
3 431 415 432
3 415 416 432
3 432 416 433
3 416 417 433
3 433 417 434
3 417 418 434
3 434 418 435
3 418 419 435
3 435 419 436
3 419 420 436
3 436 420 437
3 420 421 437
3 437 421 438
3 421 422 438
3 438 422 439
3 422 423 439
3 439 423 440
3 423 424 440
3 440 424 441
3 441 424 579
3 561 425 442
3 425 426 442
3 442 426 443
3 426 427 443
3 443 427 444
3 427 428 444
3 444 428 445
3 428 429 445
3 445 429 446
3 429 430 446
3 446 430 447
3 430 431 447
3 447 431 448
3 431 432 448
3 448 432 449
3 432 433 449
3 449 433 450
3 433 434 450
3 450 434 451
3 434 435 451
3 451 435 452
3 435 436 452
3 452 436 453
3 436 437 453
3 453 437 454
3 437 438 454
3 454 438 455
3 438 439 455
3 455 439 456
3 439 440 456
3 456 440 457
3 440 441 457
3 457 441 458
3 458 441 579
3 561 442 459
3 442 443 459
3 459 443 460
3 443 444 460
3 460 444 461
3 444 445 461
3 461 445 462
3 445 446 462
3 462 446 463
3 446 447 463
3 463 447 464
3 447 448 464
3 464 448 465
3 448 449 465
3 465 449 466
3 449 450 466
3 466 450 467
3 450 451 467
3 467 451 468
3 451 452 468
3 468 452 469
3 452 453 469
3 469 453 470
3 453 454 470
3 470 454 471
3 454 455 471
3 471 455 472
3 455 456 472
3 472 456 473
3 456 457 473
3 473 457 474
3 457 458 474
3 474 458 475
3 475 458 579
3 561 459 476
3 459 460 476
3 476 460 477
3 460 461 477
3 477 461 478
3 461 462 478
3 478 462 479
3 462 463 479
3 479 463 480
3 463 464 480
3 480 464 481
3 464 465 481
3 481 465 482
3 465 466 482
3 482 466 483
3 466 467 483
3 483 467 484
3 467 468 484
3 484 468 485
3 468 469 485
3 485 469 486
3 469 470 486
3 486 470 487
3 470 471 487
3 487 471 488
3 471 472 488
3 488 472 489
3 472 473 489
3 489 473 490
3 473 474 490
3 490 474 491
3 474 475 491
3 491 475 492
3 492 475 579
3 561 476 493
3 476 477 493
3 493 477 494
3 477 478 494
3 494 478 495
3 478 479 495
3 495 479 496
3 479 480 496
3 496 480 497
3 480 481 497
3 497 481 498
3 481 482 498
3 498 482 499
3 482 483 499
3 499 483 500
3 483 484 500
3 500 484 501
3 484 485 501
3 501 485 502
3 485 486 502
3 502 486 503
3 486 487 503
3 503 487 504
3 487 488 504
3 504 488 505
3 488 489 505
3 505 489 506
3 489 490 506
3 506 490 507
3 490 491 507
3 507 491 508
3 491 492 508
3 508 492 509
3 509 492 579
3 561 493 510
3 493 494 510
3 510 494 511
3 494 495 511
3 511 495 512
3 495 496 512
3 512 496 513
3 496 497 513
3 513 497 514
3 497 498 514
3 514 498 515
3 498 499 515
3 515 499 516
3 499 500 516
3 516 500 517
3 500 501 517
3 517 501 518
3 501 502 518
3 518 502 519
3 502 503 519
3 519 503 520
3 503 504 520
3 520 504 521
3 504 505 521
3 521 505 522
3 505 506 522
3 522 506 523
3 506 507 523
3 523 507 524
3 507 508 524
3 524 508 525
3 508 509 525
3 525 509 526
3 526 509 579
3 561 510 527
3 510 511 527
3 527 511 528
3 511 512 528
3 528 512 529
3 512 513 529
3 529 513 530
3 513 514 530
3 530 514 531
3 514 515 531
3 531 515 532
3 515 516 532
3 532 516 533
3 516 517 533
3 533 517 534
3 517 518 534
3 534 518 535
3 518 519 535
3 535 519 536
3 519 520 536
3 536 520 537
3 520 521 537
3 537 521 538
3 521 522 538
3 538 522 539
3 522 523 539
3 539 523 540
3 523 524 540
3 540 524 541
3 524 525 541
3 541 525 542
3 525 526 542
3 542 526 543
3 543 526 579
3 561 527 544
3 527 528 544
3 544 528 545
3 528 529 545
3 545 529 546
3 529 530 546
3 546 530 547
3 530 531 547
3 547 531 548
3 531 532 548
3 548 532 549
3 532 533 549
3 549 533 550
3 533 534 550
3 550 534 551
3 534 535 551
3 551 535 552
3 535 536 552
3 552 536 553
3 536 537 553
3 553 537 554
3 537 538 554
3 554 538 555
3 538 539 555
3 555 539 556
3 539 540 556
3 556 540 557
3 540 541 557
3 557 541 558
3 541 542 558
3 558 542 559
3 542 543 559
3 559 543 560
3 560 543 579
3 561 544 562
3 544 545 562
3 562 545 563
3 545 546 563
3 563 546 564
3 546 547 564
3 564 547 565
3 547 548 565
3 565 548 566
3 548 549 566
3 566 549 567
3 549 550 567
3 567 550 568
3 550 551 568
3 568 551 569
3 551 552 569
3 569 552 570
3 552 553 570
3 570 553 571
3 553 554 571
3 571 554 572
3 554 555 572
3 572 555 573
3 555 556 573
3 573 556 574
3 556 557 574
3 574 557 575
3 557 558 575
3 575 558 576
3 558 559 576
3 576 559 577
3 559 560 577
3 577 560 578
3 578 560 579
3 561 562 580
3 562 563 580
3 580 563 582
3 563 564 582
3 582 564 584
3 564 565 584
3 584 565 586
3 565 566 586
3 586 566 588
3 566 567 588
3 588 567 590
3 567 568 590
3 590 568 592
3 568 569 592
3 592 569 594
3 569 570 594
3 594 570 596
3 570 571 596
3 596 571 598
3 571 572 598
3 598 572 600
3 572 573 600
3 600 573 602
3 573 574 602
3 602 574 604
3 574 575 604
3 604 575 606
3 575 576 606
3 606 576 608
3 576 577 608
3 608 577 610
3 577 578 610
3 610 578 612
3 612 578 579
3 561 580 581
3 580 582 581
3 581 582 583
3 582 584 583
3 583 584 585
3 584 586 585
3 585 586 587
3 586 588 587
3 587 588 589
3 588 590 589
3 589 590 591
3 590 592 591
3 591 592 593
3 592 594 593
3 593 594 595
3 594 596 595
3 595 596 597
3 596 598 597
3 597 598 599
3 598 600 599
3 599 600 601
3 600 602 601
3 601 602 603
3 602 604 603
3 603 604 605
3 604 606 605
3 605 606 607
3 606 608 607
3 607 608 609
3 608 610 609
3 609 610 611
3 610 612 611
3 611 612 613
3 612 579 613
- Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3, Joe C, 05/14/2008
- Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3, Michael Hemmer, 05/15/2008
- Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3, Peter Hachenberger, 05/15/2008
- Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3, Joe C, 05/15/2008
- Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3, Andreas Fabri, 05/15/2008
- Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3, Joe C, 05/16/2008
- Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3, Andreas Fabri, 05/16/2008
- Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3, Joe C, 05/16/2008
- Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3, Andreas Fabri, 05/15/2008
- Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3, Joe C, 05/15/2008
- Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3, Peter Hachenberger, 05/15/2008
- Re: [cgal-discuss] Exact_predicates_exact_constructions_kernel_with_sqrt and Nef_polyhedron_3, Michael Hemmer, 05/15/2008
Archive powered by MHonArc 2.6.16.