Skip to Content.
Sympa Menu

cgal-discuss - Re: [cgal-discuss] Precondition Violation in Mesh Refinement 2 Package

Subject: CGAL users discussion list

List archive

Re: [cgal-discuss] Precondition Violation in Mesh Refinement 2 Package


Chronological Thread 
  • From: "Laurent Rineau (GeometryFactory)" <>
  • To:
  • Subject: Re: [cgal-discuss] Precondition Violation in Mesh Refinement 2 Package
  • Date: Tue, 23 Mar 2010 16:07:26 +0100
  • Organization: GeometryFactory

On Tuesday 23 March 2010 12:33:29 Laurent Rineau (GeometryFactory) wrote:
> On Tuesday 23 March 2010 11:04:35 Simon Perkins wrote:
> > Hi Laurent
> >
> > I've added the assertion but the problem still occurs. Here is the code.
> > It produces the two different precondition errors on both CGAL 3.5.1 and
> > 3.6. The call to refine_Delaunay_mesh_2 is on line 62 of trigen.cpp.
>
> Congratulation! You have found a bug in Mesh_2! Your data set is quite
> strange, because you insert in a cdt all finite edges of another one. That
> uncommon data set triggers a bug in the detection of clusters of
> constrained edges.
>
> I will send you a fix of include/CGAL/Mesh_2/Clusters.h before the end of
> the week.

I have attached the patch Mesh_2.patch (to be used with "patch -p0 <
Mesh_2.patch" in the CGAL installation), as well as the patched file
Clusters.h (to put in include/CGAL/Mesh_2/ in place of the old one, if you
cannot use "patch"). I have tested it on my machine with some data sets
(including yours). It will be tested in CGAL testsuite tonight.

That patch is commited in CGAL repository, and will be part of CGAL-3.6.1 and
CGAL-3.7.

--
Laurent Rineau, PhD
R&D Engineer at GeometryFactory http://www.geometryfactory.com/
Release Manager of the CGAL Project http://www.cgal.org/
Index: include/CGAL/Mesh_2/Clusters.h
===================================================================
--- include/CGAL/Mesh_2/Clusters.h	(revision 54879)
+++ include/CGAL/Mesh_2/Clusters.h	(revision 54880)
@@ -1,4 +1,5 @@
 // Copyright (c) 2004-2005  INRIA Sophia-Antipolis (France).
+// Copyright (c) 2010       GeometryFactory Sarl (France)
 // All rights reserved.
 //
 // This file is part of CGAL (www.cgal.org); you may redistribute it under
@@ -15,7 +16,7 @@
 // $Id$
 // 
 //
-// Author(s)     : Laurent RINEAU
+// Author(s)     : Laurent Rineau
 
 #ifndef CGAL_MESH_2_CLUSTERS_H
 #define CGAL_MESH_2_CLUSTERS_H
@@ -191,7 +192,7 @@
    * to the clusters of the vertex \c v.
    */
   void construct_cluster(const Vertex_handle v,
-                         Constrained_edge_circulator begin,
+                         const Constrained_edge_circulator& begin,
                          const Constrained_edge_circulator& end,
                          Cluster c = Cluster());
 
@@ -448,7 +449,7 @@
 template <typename Tr>
 void Clusters<Tr>::
 construct_cluster(Vertex_handle v,
-                  Constrained_edge_circulator begin,
+                  const Constrained_edge_circulator& begin,
                   const Constrained_edge_circulator& end,
                   Cluster c)
 {
@@ -468,11 +469,8 @@
       c.smallest_angle.second = target(second);
     }
 
-  bool all_edges_in_cluster=false; // tell if all incident edges are
-  // in the cluster
-  if(begin==end)
-    all_edges_in_cluster=true;
-
+  const bool all_edges_in_cluster = (begin == end); // tell if all incident edges
+                                              // are in the cluster
   const Point& vp = v->point();
 
   FT greatest_cosine =
@@ -480,31 +478,42 @@
                                     v->point(),
                                     c.smallest_angle.second->point());
 
+  bool one_full_loop_is_needed = all_edges_in_cluster;
+
+  bool stop = false;
+  Constrained_edge_circulator circ(begin);
   Constrained_edge_circulator next(begin);
-  ++next;
-  do
+  while(!stop)
+  {
+    c.vertices[target(circ)] = false;
+    Squared_length l = squared_distance(vp,
+                                        target(circ)->point());
+    c.minimum_squared_length =
+      (std::min)(l,c.minimum_squared_length);
+
+    if(circ!=end || one_full_loop_is_needed)
     {
-      c.vertices[target(begin)] = false;
-      Squared_length l = squared_distance(vp,
-                                        target(begin)->point());
-      c.minimum_squared_length =
-        (std::min)(l,c.minimum_squared_length);
+      FT cosine =
+        squared_cosine_of_angle_times_4(target(circ)->point(),
+                                        v->point(),
+                                        target(next)->point());
+      if(cosine>greatest_cosine)
+      {
+        greatest_cosine = cosine;
+        c.smallest_angle.first = target(circ);
+        c.smallest_angle.second = target(next);
+      }
+    }
 
-      if(all_edges_in_cluster || begin!=end)
-        {
-          FT cosine =
-            squared_cosine_of_angle_times_4(target(begin)->point(),
-                                            v->point(),
-                                            target(next)->point());
-          if(cosine>greatest_cosine)
-            {
-              greatest_cosine = cosine;
-              c.smallest_angle.first = target(begin);
-              c.smallest_angle.second = target(next);
-            }
-        }
+    if(one_full_loop_is_needed) {
+      one_full_loop_is_needed = false;
+    } else {
+      stop = (circ == end);
     }
-  while(next++,begin++!=end);
+    ++circ;
+    ++next;
+  }
+
   typedef typename Cluster_map::value_type Value_key_pair;
   cluster_map.insert(Value_key_pair(v,c));
 }
// Copyright (c) 2004-2005  INRIA Sophia-Antipolis (France).
// Copyright (c) 2010       GeometryFactory Sarl (France)
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.6-branch/Mesh_2/include/CGAL/Mesh_2/Clusters.h $
// $Id: Clusters.h 54880 2010-03-23 15:03:16Z lrineau $
// 
//
// Author(s)     : Laurent Rineau

#ifndef CGAL_MESH_2_CLUSTERS_H
#define CGAL_MESH_2_CLUSTERS_H

#include <CGAL/Filter_circulator.h>
#include <CGAL/Unique_hash_map.h>

#include <utility>
#include <boost/iterator/transform_iterator.hpp>

namespace CGAL {

namespace Mesh_2 
{

  namespace details 
  {
    template <class Tr>
    class Is_edge_constrained {
      const Tr* tr_;
    public:
      typedef Is_edge_constrained<Tr> Self;
      typedef typename Tr::Edge_circulator Edge_circulator;
      
      Is_edge_constrained(const Tr& tr) : tr_(&tr)
      {}

      bool operator()(const Edge_circulator& ec) const
      {
        return tr_->is_constrained(*ec);
      }
    };
  } // end namespace details

template <class Tr>
class Clusters
{
  typedef typename Tr::Vertex_handle          Vertex_handle;
  typedef typename Tr::Point                  Point;
  typedef typename Tr::Geom_traits Geom_traits;
  typedef typename Geom_traits::FT FT;
  typedef FT      Squared_length; /**<This typedef is used to remind that
                                     the length is squared. */
  typedef typename Tr::Edge_circulator Edge_circulator;
  
  /**
   *  Special type: filtered circulator that returns only constrained
   *  edges.
   */
  typedef Filter_circulator<Edge_circulator,
                            details::Is_edge_constrained<Tr> >
    Constrained_edge_circulator;

public:
  /** \name Clusters public types */

  /**
   * \c Cluster register several informations about clusters.
   * A cluster is a set of vertices v_i incident to one vertice
   * v_0, so that angles between segments [v_0, v_i] is less than 60
   * degres.
   */
  struct Cluster {
    bool reduced ; /**< Is the cluster reduced? */

    /** 
     * Smallest_angle gives the two vertices defining the
     * smallest angle in the cluster.
     */
    std::pair<Vertex_handle, Vertex_handle> smallest_angle;

    FT rmin; // @fixme: rmin has no meaning if reduced=false!!!
    Squared_length minimum_squared_length;

    /**
     * The following map tells what vertices are in the cluster and if
     * the corresponding segment has been splitted once.
     */
    typedef std::map<Vertex_handle, bool> Vertices_map;
    Vertices_map vertices;

    bool is_reduced() const {
      return reduced;
    }

    bool is_reduced(const Vertex_handle v) {
      return vertices[v];
    }
  };
private:
  /** \name Clusters associated types */

  typedef std::multimap<Vertex_handle, Cluster> Cluster_map;
  typedef typename Cluster_map::value_type Cluster_map_value_type;

  template <class Pair>
  struct Pair_get_first: public std::unary_function<Pair,
                                                    typename Pair::first_type>
  {
    typedef typename Pair::first_type result;
    const result& operator()(const Pair& p) const
    {
      return p.first;
    }
  };

  typedef typename Cluster::Vertices_map Cluster_vertices_map;

private:
  /* --- protected datas --- */

  Tr& tr; /**< The triangulation itself. */

  /**
   * Multimap \c Vertex_handle -> \c Cluster
   * Each vertex can have several clusters. 
   */
  Cluster_map cluster_map;

public:
  typedef typename Cluster_map::const_iterator const_iterator;
  typedef typename Cluster_map::iterator iterator;

  Clusters(Tr& tr_) : tr(tr_)
  {
  }

  /** For all vertices, calls create_clusters_of_vertex(). */
  void create_clusters() {
    create_clusters(typename Tr::Constraint_hierarchy_tag());
  }

  // function that depends of Tr::Constraint_hierarchy_tag
  template <typename Constraint_hierarchy_tag>
  void create_clusters(Constraint_hierarchy_tag) {
    cluster_map.clear();
    for(typename Tr::Finite_vertices_iterator vit = tr.finite_vertices_begin();
        vit != tr.finite_vertices_end();
        vit++)
    {
      create_clusters_of_vertex(vit);
    }
  }

  void create_clusters(Tag_true) {
    cluster_map.clear();
    Unique_hash_map<Vertex_handle,bool> created(false);
    for(typename Tr::Subconstraint_iterator it = tr.subconstraints_begin();
        it != tr.subconstraints_end(); ++it) {
      Vertex_handle vh = it->first.first;
      if(!created[vh]){
        created[vh] = true;
        create_clusters_of_vertex(vh);
      }

      vh = it->first.second;
      if(!created[vh]){
        created[vh] = true;
        create_clusters_of_vertex(vh);
      }
    }
  }

private:
  /**
   * Computes clusters of the vertex \c v, using the auxiliary function
   * construct_cluster().
   */
  void create_clusters_of_vertex(const Vertex_handle v);

  /**
   * Adds the sequence [\c begin, \c end] to the cluster \c c and adds it 
   * to the clusters of the vertex \c v.
   */
  void construct_cluster(const Vertex_handle v,
                         const Constrained_edge_circulator& begin,
                         const Constrained_edge_circulator& end,
                         Cluster c = Cluster());

public:
  /** \name Functions to manage clusters during the refinement process. */

  /** 
   * Update the cluster of [\c va,\c vb], putting \c vm instead of \c vb.
   * If reduction=false, the edge [va,vm] is not set reduced. 
   */
  void update_cluster(Cluster& c, iterator it,
                      const Vertex_handle va, const Vertex_handle vb,
                      const Vertex_handle vm,
                      bool reduction = true);

  /**
   * Returns the cluster of [\c va,\c vb] in \c c and return true
   * if it is in a cluster. Returns also a const_iterator in \c it.
   */
  bool get_cluster(const Vertex_handle va, const Vertex_handle vb,
                   Cluster& c, iterator& it);

  /** Const version of get_cluster(). */
  bool get_cluster(const Vertex_handle va, const Vertex_handle vb,
                   Cluster& c, const_iterator& it) const;

  /** \name Auxiliary functions that return a boolean. */

  /**
   * Tells if the angle <pleft, pmiddle, pright> is less than 60 degres.
   * Uses squared_cosine_of_angle_times_4() and used by
   * create_clusters_of_vertex().
   */
  bool is_small_angle(const Point& pleft,
                      const Point& pmiddle,
                      const Point& pright) const;

private:
  /** \name Helping computing functions */

  /** Returns the squared cosine of the angle <pleft, pmiddle, pright>
      times 4. */
  FT squared_cosine_of_angle_times_4(const Point& pleft,
                                     const Point& pmiddle,
                                     const Point& pright) const;

  /** Helper functions to access the two vertices of an Edge
      source is the vertex around which the circulator turns. */
  //@{
  Vertex_handle source(const Edge_circulator& ec) const
  {
    return ec->first->vertex(tr.cw(ec->second));
  }

  Vertex_handle target(const Edge_circulator& ec) const
  {
    return ec->first->vertex(tr.ccw(ec->second));
  }
  //@}

public:
  /** \name CONST ACCESS FUNCTIONS */
  typedef typename boost::transform_iterator<
    Pair_get_first<typename Cluster_map::value_type>,
    typename Cluster_map::const_iterator>
  Cluster_vertices_iterator;

  typedef typename boost::transform_iterator<
    Pair_get_first<typename Cluster_vertices_map::value_type>,
    typename Cluster_vertices_map::const_iterator>
  Vertices_in_cluster_iterator;

  int size() const
  {
    return cluster_map.size();
  }

  Cluster_vertices_iterator clusters_vertices_begin() const
  {
    return Cluster_vertices_iterator(cluster_map.begin());
  }

  Cluster_vertices_iterator clusters_vertices_end() const
  {
    return Cluster_vertices_iterator(cluster_map.end());
  }

  unsigned int number_of_clusters_at_vertex(const Vertex_handle& vh) const 
  {
    typedef typename Cluster_map::const_iterator Iterator;
    typedef std::pair<Iterator, Iterator> Range;
    Range range = cluster_map.equal_range(vh);
    return std::distance(range.first, range.second);
  }

  // returns the sequence of vertices bellonging to the n-th cluster of vh
  std::pair<Vertices_in_cluster_iterator, Vertices_in_cluster_iterator>
  vertices_in_cluster_sequence(const Vertex_handle& vh,
                               const unsigned int n) const
  {
    typedef typename Cluster_map::const_iterator Iterator;
    typedef std::pair<Iterator, Iterator> Range;
    typedef typename Range::first_type Clusters_iterator;
    typedef Pair_get_first<typename Cluster_vertices_map::value_type>
      Get_first;

    Range range = cluster_map.equal_range(vh);
    Iterator first = range.first;
    std::advance(first, n);
    const Cluster& c = first->second;

    return
      std::make_pair(Vertices_in_cluster_iterator(c.vertices.begin()),
                     Vertices_in_cluster_iterator(c.vertices.end()));
  }

}; // end class Clusters

template <typename Tr>
void Clusters<Tr>::
update_cluster(Cluster& c, iterator it, Vertex_handle va,
               Vertex_handle vb, Vertex_handle vm, bool reduction)
{
  typename Geom_traits::Compute_squared_distance_2 squared_distance =
    tr.geom_traits().compute_squared_distance_2_object();

  cluster_map.erase(it);

  c.vertices.erase(vb);
  c.vertices[vm] = reduction;

  if(vb==c.smallest_angle.first)
    c.smallest_angle.first = vm;
  if(vb==c.smallest_angle.second)
    c.smallest_angle.second = vm;

  FT l = squared_distance(va->point(),vm->point());
  if(l<c.minimum_squared_length)
    c.minimum_squared_length = l;

  if(!c.is_reduced())
    {
      typename Cluster::Vertices_map::iterator it = c.vertices.begin();
      while(it!=c.vertices.end() && c.is_reduced(it->first))
        ++it; // @todo: use std::find and an object class
      if(it==c.vertices.end())
        c.reduced = true;
    }

  if(c.is_reduced())
    c.rmin = squared_distance(c.smallest_angle.first->point(),
                              c.smallest_angle.second->point())/FT(4);
  cluster_map.insert(Cluster_map_value_type(va,c));
}

template <typename Tr>
bool Clusters<Tr>::
get_cluster(Vertex_handle va, Vertex_handle vb, Cluster& c,
            const_iterator& it) const
{
  typedef std::pair<const_iterator, const_iterator> Range;

  Range range = cluster_map.equal_range(va);

  for(it = range.first; it != range.second; it++)
    {
      const Cluster &cl = it->second;
      if(cl.vertices.find(vb)!=cl.vertices.end()) {
        c = it->second;
        return true;
      }
    }
  return false;
}

template <typename Tr>
bool Clusters<Tr>::
get_cluster(Vertex_handle va, Vertex_handle vb, Cluster& c,
            iterator& it) 
{
  typedef std::pair<iterator, iterator> Range;

  Range range = cluster_map.equal_range(va);

  for(it = range.first; it != range.second; it++)
    {
      const Cluster &cl = it->second;
      if(cl.vertices.find(vb)!=cl.vertices.end()) {
        c = it->second;
        return true;
      }
    }
  return false;
}


template <typename Tr>
void Clusters<Tr>::
create_clusters_of_vertex(const Vertex_handle v)
{
  details::Is_edge_constrained<Tr> test(tr);

  Constrained_edge_circulator begin(tr.incident_edges(v),test);

  // This circulator represents all constrained edges around the
  // vertex v. An edge [v,v'] is represented by the vertex v'.

  if(begin == 0) return; // if there is only one vertex

  Constrained_edge_circulator
    current(begin), next(begin), cluster_begin(begin);
  ++next; // next is always just after current.
  if(current == next) return;

  bool in_a_cluster = false;
  do
    {
      if(is_small_angle(target(current)->point(), v->point(),
                        target(next)->point()))
        {
          if(!in_a_cluster)
            {
              // at this point, current is the beginning of a cluster
              in_a_cluster = true;
              cluster_begin = current;
            }
        }
      else
        if(in_a_cluster)
          {
            // at this point, current is the end of a cluster and
            // cluster_begin is its beginning
            construct_cluster(v, cluster_begin, current);
            in_a_cluster = false;
          }
      ++next;
      ++current;
    } while( current!=begin );
  if(in_a_cluster)
    {
      Cluster c;
      iterator it;
      if(get_cluster(v, target(begin), c, it))
        {
          // get the cluster and erase it from the clusters map
          cluster_map.erase(it);
          construct_cluster(v, cluster_begin, begin, c);
        }
      else
        construct_cluster(v, cluster_begin, current);
    }
}

template <typename Tr>
void Clusters<Tr>::
construct_cluster(Vertex_handle v,
                  const Constrained_edge_circulator& begin,
                  const Constrained_edge_circulator& end,
                  Cluster c)
{
  typename Geom_traits::Compute_squared_distance_2 squared_distance =
    tr.geom_traits().compute_squared_distance_2_object();

  if(c.vertices.empty())
    {
      c.reduced = false;
      // c.rmin is not initialized because
      // reduced=false!
      c.minimum_squared_length =
        squared_distance(v->point(), target(begin)->point());
      Constrained_edge_circulator second(begin);
      ++second;
      c.smallest_angle.first = target(begin);
      c.smallest_angle.second = target(second);
    }

  const bool all_edges_in_cluster = (begin == end); // tell if all incident edges
                                              // are in the cluster
  const Point& vp = v->point();

  FT greatest_cosine =
    squared_cosine_of_angle_times_4(c.smallest_angle.first->point(),
                                    v->point(),
                                    c.smallest_angle.second->point());

  bool one_full_loop_is_needed = all_edges_in_cluster;

  bool stop = false;
  Constrained_edge_circulator circ(begin);
  Constrained_edge_circulator next(begin);
  while(!stop)
  {
    c.vertices[target(circ)] = false;
    Squared_length l = squared_distance(vp,
                                        target(circ)->point());
    c.minimum_squared_length =
      (std::min)(l,c.minimum_squared_length);

    if(circ!=end || one_full_loop_is_needed)
    {
      FT cosine =
        squared_cosine_of_angle_times_4(target(circ)->point(),
                                        v->point(),
                                        target(next)->point());
      if(cosine>greatest_cosine)
      {
        greatest_cosine = cosine;
        c.smallest_angle.first = target(circ);
        c.smallest_angle.second = target(next);
      }
    }

    if(one_full_loop_is_needed) {
      one_full_loop_is_needed = false;
    } else {
      stop = (circ == end);
    }
    ++circ;
    ++next;
  }

  typedef typename Cluster_map::value_type Value_key_pair;
  cluster_map.insert(Value_key_pair(v,c));
}

template <typename Tr>
bool Clusters<Tr>::
is_small_angle(const Point& pleft,
               const Point& pmiddle,
               const Point& pright) const
{
  typename Geom_traits::Angle_2 angle = 
    tr.geom_traits().angle_2_object();
  typename Geom_traits::Orientation_2 orient =
    tr.geom_traits().orientation_2_object();

  if( angle(pleft, pmiddle, pright)==OBTUSE )
    return false;
  if( orient(pmiddle,pleft,pright)==RIGHT_TURN)
    return false;

  FT cos_alpha = squared_cosine_of_angle_times_4(pleft, pmiddle,
                                                 pright);

  if(cos_alpha > 1)
    {
      return true; //the same cluster
    }
  else
    {
      return false; //another cluster
    }
}

template <typename Tr>
typename Clusters<Tr>::FT
Clusters<Tr>::
squared_cosine_of_angle_times_4(const Point& pb, const Point& pa,
                                const Point& pc) const
{
  typename Geom_traits::Compute_squared_distance_2 squared_distance =
    tr.geom_traits().compute_squared_distance_2_object();

  const FT
    a = squared_distance(pb, pc),
    b = squared_distance(pa, pb),
    c = squared_distance(pa, pc);

  const FT num = a-(b+c);

  return (num*num)/(b*c);
}
  
} // end namespace Mesh_2

} // end namespace CGAL

#endif // CGAL_MESH_2_CLUSTERS_H



Archive powered by MHonArc 2.6.16.

Top of Page