Skip to Content.
Sympa Menu

cgal-discuss - Re: [cgal-discuss] Difference between Manifold and Quasi-manifold

Subject: CGAL users discussion list

List archive

Re: [cgal-discuss] Difference between Manifold and Quasi-manifold


Chronological Thread 
  • From: Guillaume Damiand <>
  • To:
  • Subject: Re: [cgal-discuss] Difference between Manifold and Quasi-manifold
  • Date: Thu, 12 Jun 2014 09:08:16 +0200

Le 11/06/2014 13:32, Pranav a écrit :
Actually, I want to get intuition behind homeomorphism. For example in
Figure 24.6
<http://doc.cgal.org/latest/Combinatorial_map/index.html#fig__figquasivariete>
, how can I /intuitvely/ figure out that the neighbourhood of /p/ cannot be
deformed to 3-ball?

Once again, cf wikipedia [1]: "Roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape."

[1] http://en.wikipedia.org/wiki/Homeomorphism








--
View this message in context:
http://cgal-discuss.949826.n4.nabble.com/Difference-between-Manifold-and-Quasi-manifold-tp4659420p4659428.html
Sent from the cgal-discuss mailing list archive at Nabble.com.



--
===================================================================
Guillaume DAMIAND

CNRS - LIRIS UMR 5205
Université Claude Bernard
Bâtiment Nautibus (710)
43 Boulevard du 11 Novembre 1918
69622 Villeurbanne Cedex (France)
-------------------------------------------------------------------
Tél: +33 (0)4.72.43.26.62 Fax: +33 (0)4.72.43.15.36
Mail:

Web: http://liris.cnrs.fr/guillaume.damiand/
===================================================================


Attachment: smime.p7s
Description: Signature cryptographique S/MIME




Archive powered by MHonArc 2.6.18.

Top of Page