Subject: CGAL users discussion list
List archive
- From: "Sebastien Loriot (GeometryFactory)" <>
- To:
- Subject: Re: [cgal-discuss] Epick convex_hull_3 assertion
- Date: Sun, 04 Jan 2015 11:56:04 +0100
- Organization: GeometryFactory
On 01/03/2015 11:31 PM, Marc Glisse wrote:
On Sat, 3 Jan 2015, Marius Kintel wrote:Marc is right. Could you try with the following patched file?
As the author of OpenSCAD, I get a lot of user testing of various CGAL
functions. I experience a lot of CGAL assertions, mostly due to
malformed data.
This one looks suspiciously like a CGAL bug though:
CGAL error: assertion violation!
Expression : orientation(v1,v2,vz) != COPLANAR
File :
/Users/kintel/code/OpenSCAD/libraries/install/include/CGAL/convex_hull_3.h
Line : 350
Looking at my minimal example below, it appears that CGAL is using two
different methods for determining whether three points are collinear;
a collinearity test and a coplanarity test involving a fourth point.
The issue seems to be that the second test is more strict than the
first and this second test is being used as an assert.
If you look at the vertices in my code, it’s clear that it’s possible
to select three non-collinear vertices if a more strict test was used,
this avoiding the assertion error.
It does look like a bug, the algorithm apparently *constructs* (inexact)
vectors, which seems to violate the CGAL philosophy of predicates. Maybe
we could check instead if Traits_yz_3 says that the points are collinear
(we don't seem to have a version of orientation taking 3 points and a
vector).
Thanks,
Sebastien.
// Copyright (c) 2001,2011 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the
software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Susan Hert
<>
// : Amol Prakash
<>
// : Andreas Fabri
#ifndef CGAL_CONVEX_HULL_3_H
#define CGAL_CONVEX_HULL_3_H
#include <CGAL/basic.h>
#include <CGAL/algorithm.h>
#include <CGAL/convex_hull_2.h>
#include <CGAL/Polyhedron_incremental_builder_3.h>
#include <CGAL/Projection_traits_xy_3.h>
#include <CGAL/Projection_traits_xz_3.h>
#include <CGAL/Projection_traits_yz_3.h>
#include <CGAL/Convex_hull_traits_3.h>
#include <CGAL/Convex_hull_2/ch_assertions.h>
#include <CGAL/Triangulation_data_structure_2.h>
#include <CGAL/Triangulation_vertex_base_with_info_2.h>
#include <CGAL/Cartesian_converter.h>
#include <CGAL/Simple_cartesian.h>
#include <iostream>
#include <algorithm>
#include <utility>
#include <list>
#include <map>
#include <vector>
#include <boost/bind.hpp>
#include <boost/next_prior.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/mpl/has_xxx.hpp>
#include <CGAL/internal/Exact_type_selector.h>
#ifndef CGAL_CH_NO_POSTCONDITIONS
#include <CGAL/convexity_check_3.h>
#endif // CGAL_CH_NO_POSTCONDITIONS
namespace CGAL {
namespace internal{ namespace Convex_hull_3{
//struct to select the default traits class for computing convex hull
template< class Point_3,
class Is_floating_point=typename boost::is_floating_point<typename
Kernel_traits<Point_3>::Kernel::FT>::type,
class Has_filtered_predicates_tag=typename
Kernel_traits<Point_3>::Kernel::Has_filtered_predicates_tag >
struct Default_traits_for_Chull_3{
typedef typename Kernel_traits<Point_3>::Kernel type;
};
//FT is a floating point type and Kernel is a filtered kernel
template <class Point_3>
struct Default_traits_for_Chull_3<Point_3,boost::true_type,Tag_true>{
typedef Convex_hull_traits_3< typename Kernel_traits<Point_3>::Kernel >
type;
};
template <class Traits>
struct Default_polyhedron_for_Chull_3{
typedef CGAL::Polyhedron_3<Traits> type;
};
template <class K>
struct Default_polyhedron_for_Chull_3<Convex_hull_traits_3<K> >{
typedef typename Convex_hull_traits_3<K>::Polyhedron_3 type;
};
//utility class to select the right version of internal predicate
Is_on_positive_side_of_plane_3
template <class Traits,
class Is_floating_point=
typename boost::is_floating_point<typename Kernel_traits<typename
Traits::Point_3>::Kernel::FT>::type,
class Has_filtered_predicates_tag=typename Kernel_traits<typename
Traits::Point_3>::Kernel::Has_filtered_predicates_tag,
class Has_cartesian_tag=typename Kernel_traits<typename
Traits::Point_3>::Kernel::Kernel_tag,
class Has_classical_point_type =
typename boost::is_same<
typename Kernel_traits<typename
Traits::Point_3>::Kernel::Point_3,
typename Traits::Point_3 >::type
>
struct Use_advanced_filtering{
typedef CGAL::Tag_false type;
};
template <class Traits>
struct
Use_advanced_filtering<Traits,boost::true_type,Tag_true,Cartesian_tag,boost::true_type>{
typedef typename Kernel_traits<typename Traits::Point_3>::Kernel K;
typedef CGAL::Boolean_tag<K::Has_static_filters> type;
};
//Predicates internally used
template <class Traits,class Tag_use_advanced_filtering=typename
Use_advanced_filtering<Traits>::type >
class Is_on_positive_side_of_plane_3{
typedef typename Traits::Point_3 Point_3;
typename Traits::Plane_3 plane;
typename Traits::Has_on_positive_side_3 has_on_positive_side;
public:
typedef Protect_FPU_rounding<false> Protector;
Is_on_positive_side_of_plane_3(const Traits& traits,const Point_3& p,const
Point_3& q,const Point_3& r)
:plane(traits.construct_plane_3_object()(p,q,r)),has_on_positive_side(traits.has_on_positive_side_3_object())
{}
bool operator() (const Point_3& s) const
{
return has_on_positive_side(plane,s);
}
};
//This predicate uses copy of the code from the statically filtered version of
//Orientation_3. The rational is that the plane is a member of the functor
//so optimization are done to avoid doing several time operations on the
plane.
//The main operator() first tries the static version of the predicate, then
uses
//interval arithmetic (the protector must be created before using this
predicate)
//and in case of failure, exact arithmetic is used.
template <class Kernel>
class Is_on_positive_side_of_plane_3<Convex_hull_traits_3<Kernel>,Tag_true>{
typedef
Simple_cartesian<CGAL::internal::Exact_field_selector<double>::Type>
PK;
typedef Simple_cartesian<Interval_nt_advanced >
CK;
typedef Convex_hull_traits_3<Kernel>
Traits;
typedef typename Traits::Point_3
Point_3;
Cartesian_converter<Kernel,CK> to_CK;
Cartesian_converter<Kernel,PK> to_PK;
const Point_3& p,q,r;
mutable typename CK::Plane_3* ck_plane;
mutable typename PK::Plane_3* pk_plane;
double m10,m20,m21,Maxx,Maxy,Maxz;
static const int STATIC_FILTER_FAILURE = 555;
//this function is a made from the statically filtered version of
Orientation_3
int static_filtered(double psx,double psy, double psz) const{
// Then semi-static filter.
double apsx = CGAL::abs(psx);
double apsy = CGAL::abs(psy);
double apsz = CGAL::abs(psz);
double maxx = (Maxx < apsx)? apsx : Maxx;
double maxy = (Maxy < apsy)? apsy : Maxy;
double maxz = (Maxz < apsz)? apsz : Maxz;
double det = psx*m10 - m20*psy + m21*psz;
// Sort maxx < maxy < maxz.
if (maxx > maxz)
std::swap(maxx, maxz);
if (maxy > maxz)
std::swap(maxy, maxz);
else if (maxy < maxx)
std::swap(maxx, maxy);
// Protect against underflow in the computation of eps.
if (maxx < 1e-97) /* cbrt(min_double/eps) */ {
if (maxx == 0)
return 0;
}
// Protect against overflow in the computation of det.
else if (maxz < 1e102) /* cbrt(max_double [hadamard]/4) */ {
double eps = 5.1107127829973299e-15 * maxx * maxy * maxz;
if (det > eps) return 1;
if (det < -eps) return -1;
}
return STATIC_FILTER_FAILURE;
}
public:
typedef typename Interval_nt_advanced::Protector Protector;
Is_on_positive_side_of_plane_3(const Traits&,const Point_3& p_,const
Point_3& q_,const Point_3& r_)
:p(p_),q(q_),r(r_),ck_plane(NULL),pk_plane(NULL)
{
double pqx = q.x() - p.x();
double pqy = q.y() - p.y();
double pqz = q.z() - p.z();
double prx = r.x() - p.x();
double pry = r.y() - p.y();
double prz = r.z() - p.z();
m10 = pqy*prz - pry*pqz;
m20 = pqx*prz - prx*pqz;
m21 = pqx*pry - prx*pqy;
double aprx = CGAL::abs(prx);
double apry = CGAL::abs(pry);
double aprz = CGAL::abs(prz);
Maxx = CGAL::abs(pqx);
if (Maxx < aprx) Maxx = aprx;
Maxy = CGAL::abs(pqy);
if (Maxy < apry) Maxy = apry;
Maxz = CGAL::abs(pqz);
if (Maxz < aprz) Maxz = aprz;
}
~Is_on_positive_side_of_plane_3(){
if (ck_plane!=NULL) delete ck_plane;
if (pk_plane!=NULL) delete pk_plane;
}
bool operator() (const Point_3& s) const
{
double psx = s.x() - p.x();
double psy = s.y() - p.y();
double psz = s.z() - p.z();
int static_res = static_filtered(psx,psy,psz);
if (static_res != STATIC_FILTER_FAILURE)
return static_res == 1;
try{
if (ck_plane==NULL)
ck_plane=new typename CK::Plane_3(to_CK(p),to_CK(q),to_CK(r));
return ck_plane->has_on_positive_side(to_CK(s));
}
catch (Uncertain_conversion_exception){
if (pk_plane==NULL)
pk_plane=new typename PK::Plane_3(to_PK(p),to_PK(q),to_PK(r));
return pk_plane->has_on_positive_side(to_PK(s));
}
}
};
template<class HDS, class ForwardIterator>
class Build_coplanar_poly : public Modifier_base<HDS> {
public:
Build_coplanar_poly(ForwardIterator i, ForwardIterator j)
{
start = i;
end = j;
}
void operator()( HDS& hds) {
Polyhedron_incremental_builder_3<HDS> B(hds,true);
ForwardIterator iter = start;
int count = 0;
while (iter != end)
{
count++;
iter++;
}
B.begin_surface(count, 1, 2*count);
iter = start;
while (iter != end)
{
B.add_vertex(*iter);
iter++;
}
iter = start;
B.begin_facet();
int p = 0;
while (p < count)
{
B.add_vertex_to_facet(p);
p++;
}
B.end_facet();
B.end_surface();
}
private:
ForwardIterator start;
ForwardIterator end;
};
namespace internal { namespace Convex_hull_3{
BOOST_MPL_HAS_XXX_TRAIT_NAMED_DEF(Traits_has_typedef_Traits_xy_3,Traits_xy_3,false)
BOOST_MPL_HAS_XXX_TRAIT_NAMED_DEF(Traits_has_typedef_Traits_yz_3,Traits_xy_3,false)
BOOST_MPL_HAS_XXX_TRAIT_NAMED_DEF(Traits_has_typedef_Traits_xz_3,Traits_xy_3,false)
template <class T,bool has_projection_traits=
Traits_has_typedef_Traits_xy_3<T>::value &&
Traits_has_typedef_Traits_yz_3<T>::value &&
Traits_has_typedef_Traits_xz_3<T>::value
>
struct Projection_traits{
typedef typename Kernel_traits<typename T::Point_3>::Kernel K;
typedef CGAL::Projection_traits_xy_3<K> Traits_xy_3;
typedef CGAL::Projection_traits_yz_3<K> Traits_yz_3;
typedef CGAL::Projection_traits_xz_3<K> Traits_xz_3;
};
template <class T>
struct Projection_traits<T,true>{
typedef typename T::Traits_xy_3 Traits_xy_3;
typedef typename T::Traits_yz_3 Traits_yz_3;
typedef typename T::Traits_xz_3 Traits_xz_3;
};
} } //end of namespace internal::Convex_hull_3
template <class InputIterator, class Point_3, class Polyhedron_3, class
Traits>
void coplanar_3_hull(InputIterator first, InputIterator beyond,
const Point_3& p1, const Point_3& p2, const Point_3& p3,
Polyhedron_3& P, const Traits& /* traits */)
{
typedef typename internal::Convex_hull_3::Projection_traits<Traits> PTraits;
typedef typename PTraits::Traits_xy_3 Traits_xy_3;
typedef typename PTraits::Traits_yz_3 Traits_yz_3;
typedef typename PTraits::Traits_xz_3 Traits_xz_3;
std::list<Point_3> CH_2;
typedef typename std::list<Point_3>::iterator CH_2_iterator;
Traits_xy_3 traits_xy;
typename Traits_xy_3::Left_turn_2 left_turn_in_xy =
traits_xy.left_turn_2_object();
if ( left_turn_in_xy(p1,p2,p3) || left_turn_in_xy(p2,p1,p3) )
convex_hull_points_2( first, beyond,
std::back_inserter(CH_2),
traits_xy );
else{
Traits_yz_3 traits_yz;
typename Traits_yz_3::Left_turn_2 left_turn_in_yz =
traits_yz.left_turn_2_object();
if ( left_turn_in_yz(p1,p2,p3) || left_turn_in_yz(p2,p1,p3) )
convex_hull_points_2( first, beyond,
std::back_inserter(CH_2),
traits_yz );
else{
Traits_xz_3 traits_xz;
typename Traits_xz_3::Left_turn_2 left_turn_in_xz =
traits_xz.left_turn_2_object();
CGAL_assertion( left_turn_in_xz(p1,p2,p3) || left_turn_in_xz(p2,p1,p3)
);
convex_hull_points_2( first, beyond,
std::back_inserter(CH_2),
traits_xz );
}
}
typedef typename Polyhedron_3::Halfedge_data_structure HDS;
Build_coplanar_poly<HDS,CH_2_iterator> poly(CH_2.begin(),CH_2.end());
P.delegate(poly);
}
//
// visible is the set of facets visible from point and reachable from
// start_facet.
//
template <class TDS_2, class Traits>
void
find_visible_set(TDS_2& tds,
const typename Traits::Point_3& point,
typename TDS_2::Face_handle start,
std::list<typename TDS_2::Face_handle>& visible,
std::map<typename TDS_2::Vertex_handle, typename
TDS_2::Edge>& outside,
const Traits& traits)
{
typedef typename Traits::Plane_3 Plane_3;
typedef typename TDS_2::Face_handle Face_handle;
typedef typename TDS_2::Vertex_handle Vertex_handle;
typename Traits::Has_on_positive_side_3 has_on_positive_side =
traits.has_on_positive_side_3_object();
std::vector<Vertex_handle> vertices;
vertices.reserve(10);
int VISITED=1, BORDER=2;
visible.clear();
typename std::list<Face_handle>::iterator vis_it;
visible.push_back(start);
start->info() = VISITED;
vertices.push_back(start->vertex(0));
vertices.push_back(start->vertex(1));
vertices.push_back(start->vertex(2));
start->vertex(0)->info() = start->vertex(1)->info() =
start->vertex(2)->info() = VISITED;
for (vis_it = visible.begin(); vis_it != visible.end(); vis_it++)
{
// check all the neighbors of the current face to see if they have
// already been visited or not and if not whether they are visible
// or not.
for(int i=0; i < 3; i++) {
// the facet on the other side of the current halfedge
Face_handle f = (*vis_it)->neighbor(i);
// if haven't already seen this facet
if (f->info() == 0) {
f->info() = VISITED;
Plane_3
plane(f->vertex(0)->point(),f->vertex(1)->point(),f->vertex(2)->point());
int ind = f->index(*vis_it);
if ( has_on_positive_side(plane, point) ){ // is visible
visible.push_back(f);
Vertex_handle vh = f->vertex(ind);
if(vh->info() == 0){ vertices.push_back(vh); vh->info() =
VISITED;}
} else {
f->info() = BORDER;
f->vertex(TDS_2::cw(ind))->info() = BORDER;
f->vertex(TDS_2::ccw(ind))->info() = BORDER;
outside.insert(std::make_pair(f->vertex(TDS_2::cw(ind)),
typename TDS_2::Edge(f,ind)));
}
} else if(f->info() == BORDER) {
int ind = f->index(*vis_it);
f->vertex(TDS_2::cw(ind))->info() = BORDER;
f->vertex(TDS_2::ccw(ind))->info() = BORDER;
outside.insert(std::make_pair(f->vertex(TDS_2::cw(ind)),
typename TDS_2::Edge(f,ind)));
}
}
}
for(typename std::vector<Vertex_handle>::iterator vit = vertices.begin();
vit != vertices.end();
++vit){
if((*vit)->info() != BORDER){
tds.delete_vertex(*vit);
} else {
(*vit)->info() = 0;
}
}
}
// using a third template parameter for the point instead of getting it from
// the traits class as it should be is required by M$VC6
template <class Face_handle, class Traits, class Point>
typename std::list<Point>::iterator
farthest_outside_point(Face_handle f, std::list<Point>& outside_set,
const Traits& traits)
{
typedef typename std::list<Point>::iterator Outside_set_iterator;
CGAL_ch_assertion(!outside_set.empty());
typename Traits::Plane_3
plane(f->vertex(0)->point(),f->vertex(1)->point(),f->vertex(2)->point());
typename Traits::Less_signed_distance_to_plane_3 less_dist_to_plane =
traits.less_signed_distance_to_plane_3_object();
Outside_set_iterator farthest_it =
std::max_element(outside_set.begin(),
outside_set.end(),
boost::bind(less_dist_to_plane, plane, _1, _2));
return farthest_it;
}
template <class Face_handle, class Traits, class Point>
void
partition_outside_sets(const std::list<Face_handle>& new_facets,
std::list<Point>& vis_outside_set,
std::list<Face_handle>& pending_facets,
const Traits& traits)
{
typename std::list<Face_handle>::const_iterator f_list_it;
typename std::list<Point>::iterator point_it, to_splice;
// walk through all the new facets and check each unassigned outside point
// to see if it belongs to the outside set of this new facet.
for (f_list_it = new_facets.begin(); (f_list_it != new_facets.end()) && (!
vis_outside_set.empty());
++f_list_it)
{
Face_handle f = *f_list_it;
Is_on_positive_side_of_plane_3<Traits> is_on_positive_side(
traits,f->vertex(0)->point(),f->vertex(1)->point(),f->vertex(2)->point());
std::list<Point>& point_list = f->points;
for (point_it = vis_outside_set.begin();point_it !=
vis_outside_set.end();){
if( is_on_positive_side(*point_it) ) {
to_splice = point_it;
++point_it;
point_list.splice(point_list.end(), vis_outside_set, to_splice);
} else {
++point_it;
}
}
if(! point_list.empty()){
pending_facets.push_back(f);
f->it = boost::prior(pending_facets.end());
} else {
f->it = pending_facets.end();
}
}
for (; f_list_it != new_facets.end();++f_list_it)
(*f_list_it)->it = pending_facets.end();
}
template <class TDS_2, class Traits>
void
ch_quickhull_3_scan(TDS_2& tds,
std::list<typename TDS_2::Face_handle>& pending_facets,
const Traits& traits)
{
typedef typename TDS_2::Edge Edge;
typedef typename TDS_2::Face_handle Face_handle;
typedef typename TDS_2::Vertex_handle Vertex_handle;
typedef typename Traits::Point_3 Point_3;
typedef std::list<Point_3> Outside_set;
typedef typename std::list<Point_3>::iterator
Outside_set_iterator;
typedef std::map<typename TDS_2::Vertex_handle, typename TDS_2::Edge>
Border_edges;
std::list<Face_handle> visible_set;
typename std::list<Face_handle>::iterator vis_set_it;
Outside_set vis_outside_set;
Border_edges border;
while (!pending_facets.empty())
{
vis_outside_set.clear();
Face_handle f_handle = pending_facets.front();
Outside_set_iterator farthest_pt_it = farthest_outside_point(f_handle,
f_handle->points, traits);
Point_3 farthest_pt = *farthest_pt_it;
f_handle->points.erase(farthest_pt_it);
find_visible_set(tds, farthest_pt, f_handle, visible_set, border,
traits);
// for each visible facet
for (vis_set_it = visible_set.begin(); vis_set_it != visible_set.end();
vis_set_it++)
{
// add its outside set to the global outside set list
std::list<Point_3>& point_list = (*vis_set_it)->points;
if(! point_list.empty()){
vis_outside_set.splice(vis_outside_set.end(), point_list,
point_list.begin(), point_list.end());
}
if((*vis_set_it)->it != pending_facets.end()){
pending_facets.erase((*vis_set_it)->it);
}
(*vis_set_it)->info() = 0;
}
std::vector<Edge> edges;
edges.reserve(border.size());
typename Border_edges::iterator it = border.begin();
Edge e = it->second;
e.first->info() = 0;
edges.push_back(e);
border.erase(it);
while(! border.empty()){
it = border.find(e.first->vertex(TDS_2::ccw(e.second)));
assert(it != border.end());
e = it->second;
e.first->info() = 0;
edges.push_back(e);
border.erase(it);
}
// If we want to reuse the faces we must only pass |edges| many, and
call delete_face for the others.
// Also create facets if necessary
std::ptrdiff_t diff = visible_set.size() - edges.size();
if(diff < 0){
for(int i = 0; i<-diff;i++){
visible_set.push_back(tds.create_face());
}
} else {
for(int i = 0; i<diff;i++){
tds.delete_face(visible_set.back());
visible_set.pop_back();
}
}
Vertex_handle vh = tds.star_hole(edges.begin(), edges.end(),
visible_set.begin(), visible_set.end());
vh->point() = farthest_pt;
vh->info() = 0;
// now partition the set of outside set points among the new facets.
partition_outside_sets(visible_set, vis_outside_set,
pending_facets, traits);
}
}
template <class TDS_2, class Traits>
void non_coplanar_quickhull_3(std::list<typename Traits::Point_3>& points,
TDS_2& tds, const Traits& traits)
{
typedef typename Traits::Point_3 Point_3;
typedef typename TDS_2::Face_handle Face_handle;
typedef typename TDS_2::Face_iterator Face_iterator;
typedef typename std::list<Point_3>::iterator P3_iterator;
std::list<Face_handle> pending_facets;
typename Is_on_positive_side_of_plane_3<Traits>::Protector p;
// for each facet, look at each unassigned point and decide if it belongs
// to the outside set of this facet.
for(Face_iterator fit = tds.faces_begin(); fit != tds.faces_end(); ++fit){
Is_on_positive_side_of_plane_3<Traits> is_on_positive_side(
traits,fit->vertex(0)->point(),fit->vertex(1)->point(),fit->vertex(2)->point()
);
for (P3_iterator point_it = points.begin() ; point_it != points.end(); )
{
if( is_on_positive_side(*point_it) ) {
P3_iterator to_splice = point_it;
++point_it;
fit->points.splice(fit->points.end(), points, to_splice);
} else {
++point_it;
}
}
}
// add all the facets with non-empty outside sets to the set of facets for
// further consideration
for(Face_iterator fit = tds.faces_begin(); fit != tds.faces_end(); ++fit){
if (! fit->points.empty()){
pending_facets.push_back(fit);
fit->it = boost::prior(pending_facets.end());
} else {
fit->it = pending_facets.end();
}
}
ch_quickhull_3_scan(tds, pending_facets, traits);
//std::cout << "|V(tds)| = " << tds.number_of_vertices() << std::endl;
// CGAL_ch_expensive_postcondition(all_points_inside(points.begin(),
// points.end(),P,traits));
// CGAL_ch_postcondition(is_strongly_convex_3(P, traits));
}
namespace internal{
template <class HDS,class TDS>
class Build_convex_hull_from_TDS_2 : public CGAL::Modifier_base<HDS> {
typedef std::map<typename TDS::Vertex_handle,unsigned> Vertex_map;
const TDS& t;
template <class Builder>
static unsigned get_vertex_index( Vertex_map& vertex_map,
typename TDS::Vertex_handle vh,
Builder& builder,
unsigned& vindex)
{
std::pair<typename Vertex_map::iterator,bool>
res=vertex_map.insert(std::make_pair(vh,vindex));
if (res.second){
builder.add_vertex(vh->point());
++vindex;
}
return res.first->second;
}
public:
Build_convex_hull_from_TDS_2(const TDS& t_):t(t_)
{
CGAL_assertion(t.dimension()==2);
}
void operator()( HDS& hds) {
// Postcondition: `hds' is a valid polyhedral surface.
CGAL::Polyhedron_incremental_builder_3<HDS> B( hds, true);
Vertex_map vertex_map;
//start the surface
B.begin_surface( t.number_of_vertices(), t.number_of_faces());
unsigned vindex=0;
for (typename TDS::Face_iterator
it=t.faces_begin();it!=t.faces_end();++it)
{
unsigned i0=get_vertex_index(vertex_map,it->vertex(0),B,vindex);
unsigned i1=get_vertex_index(vertex_map,it->vertex(1),B,vindex);
unsigned i2=get_vertex_index(vertex_map,it->vertex(2),B,vindex);
B.begin_facet();
B.add_vertex_to_facet( i0 );
B.add_vertex_to_facet( i1 );
B.add_vertex_to_facet( i2 );
B.end_facet();
}
B.end_surface();
}
};
} //namespace internal
template <class InputIterator, class Polyhedron_3, class Traits>
void
ch_quickhull_polyhedron_3(std::list<typename Traits::Point_3>& points,
InputIterator point1_it, InputIterator point2_it,
InputIterator point3_it, Polyhedron_3& P,
const Traits& traits)
{
typedef typename Traits::Point_3 Point_3;
typedef typename Traits::Plane_3 Plane_3;
typedef typename std::list<Point_3>::iterator P3_iterator;
typedef Triangulation_data_structure_2<
Triangulation_vertex_base_with_info_2<int, GT3_for_CH3<Traits> >,
Convex_hull_face_base_2<int, Traits> > Tds;
typedef typename Tds::Vertex_handle Vertex_handle;
typedef typename Tds::Face_handle Face_handle;
// found three points that are not collinear, so construct the plane defined
// by these points and then find a point that has maximum distance from this
// plane.
typename Traits::Construct_plane_3 construct_plane =
traits.construct_plane_3_object();
Plane_3 plane = construct_plane(*point3_it, *point2_it, *point1_it);
typedef typename Traits::Less_signed_distance_to_plane_3 Dist_compare;
Dist_compare compare_dist = traits.less_signed_distance_to_plane_3_object();
typename Traits::Coplanar_3 coplanar = traits.coplanar_3_object();
// find both min and max here since using signed distance. If all points
// are on the negative side of the plane, the max element will be on the
// plane.
std::pair<P3_iterator, P3_iterator> min_max;
min_max = CGAL::min_max_element(points.begin(), points.end(),
boost::bind(compare_dist, plane, _1, _2),
boost::bind(compare_dist, plane, _1, _2));
P3_iterator max_it;
if (coplanar(*point1_it, *point2_it, *point3_it, *min_max.second))
{
max_it = min_max.first;
// want the orientation of the points defining the plane to be positive
// so have to reorder these points if all points were on negative side
// of plane
std::swap(*point1_it, *point3_it);
}
else
max_it = min_max.second;
// if the maximum distance point is on the plane then all are coplanar
if (coplanar(*point1_it, *point2_it, *point3_it, *max_it)) {
coplanar_3_hull(points.begin(), points.end(), *point1_it, *point2_it,
*point3_it, P, traits);
} else {
Tds tds;
Vertex_handle v0 = tds.create_vertex(); v0->set_point(*point1_it);
Vertex_handle v1 = tds.create_vertex(); v1->set_point(*point2_it);
Vertex_handle v2 = tds.create_vertex(); v2->set_point(*point3_it);
Vertex_handle v3 = tds.create_vertex(); v3->set_point(*max_it);
v0->info() = v1->info() = v2->info() = v3->info() = 0;
Face_handle f0 = tds.create_face(v0,v1,v2);
Face_handle f1 = tds.create_face(v3,v1,v0);
Face_handle f2 = tds.create_face(v3,v2,v1);
Face_handle f3 = tds.create_face(v3,v0,v2);
tds.set_dimension(2);
f0->set_neighbors(f2, f3, f1);
f1->set_neighbors(f0, f3, f2);
f2->set_neighbors(f0, f1, f3);
f3->set_neighbors(f0, f2, f1);
points.erase(point1_it);
points.erase(point2_it);
points.erase(point3_it);
points.erase(max_it);
if (!points.empty()){
non_coplanar_quickhull_3(points, tds, traits);
internal::Build_convex_hull_from_TDS_2<typename
Polyhedron_3::HalfedgeDS,Tds> builder(tds);
P.delegate(builder);
}
else
P.make_tetrahedron(v0->point(),v1->point(),v2->point(),v3->point());
}
}
} } //namespace internal::Convex_hull_3
template <class InputIterator, class Traits>
void
convex_hull_3(InputIterator first, InputIterator beyond,
Object& ch_object, const Traits& traits)
{
typedef typename Traits::Point_3 Point_3;
typedef std::list<Point_3> Point_3_list;
typedef typename Point_3_list::iterator P3_iterator;
typedef std::pair<P3_iterator,P3_iterator> P3_iterator_pair;
if (first == beyond) // No point
return;
// If the first and last point are equal the collinearity test some lines
below will always be true.
Point_3_list points(first, beyond);
std::size_t size = points.size();
while((size > 1) && (points.front() == points.back())){
points.pop_back();
--size;
}
if ( size == 1 ) // 1 point
{
ch_object = make_object(*points.begin());
return;
}
else if ( size == 2 ) // 2 points
{
typedef typename Traits::Segment_3 Segment_3;
typename Traits::Construct_segment_3 construct_segment =
traits.construct_segment_3_object();
Segment_3 seg = construct_segment(*points.begin(), *(++points.begin()));
ch_object = make_object(seg);
return;
}
else if ( size == 3 ) // 3 points
{
typedef typename Traits::Triangle_3 Triangle_3;
typename Traits::Construct_triangle_3 construct_triangle =
traits.construct_triangle_3_object();
Triangle_3 tri = construct_triangle(*(points.begin()),
*(++points.begin()),
*(--points.end()));
ch_object = make_object(tri);
return;
}
// at least 4 points
typename Traits::Collinear_3 collinear = traits.collinear_3_object();
P3_iterator point1_it = points.begin();
P3_iterator point2_it = points.begin();
point2_it++;
P3_iterator point3_it = points.end();
point3_it--;
// find three that are not collinear
while (point2_it != points.end() &&
collinear(*point1_it,*point2_it,*point3_it))
point2_it++;
// all are collinear, so the answer is a segment
if (point2_it == points.end())
{
typedef typename Traits::Less_distance_to_point_3 Less_dist;
Less_dist less_dist = traits.less_distance_to_point_3_object();
P3_iterator_pair endpoints =
min_max_element(points.begin(), points.end(),
boost::bind(less_dist, *points.begin(), _1, _2),
boost::bind(less_dist, *points.begin(), _1, _2));
typename Traits::Construct_segment_3 construct_segment =
traits.construct_segment_3_object();
typedef typename Traits::Segment_3 Segment_3;
Segment_3 seg = construct_segment(*endpoints.first, *endpoints.second);
ch_object = make_object(seg);
return;
}
// result will be a polyhedron
typename
internal::Convex_hull_3::Default_polyhedron_for_Chull_3<Traits>::type P;
P3_iterator minx, maxx, miny, it;
minx = maxx = miny = it = points.begin();
++it;
for(; it != points.end(); ++it){
if(it->x() < minx->x()) minx = it;
if(it->x() > maxx->x()) maxx = it;
if(it->y() < miny->y()) miny = it;
}
if(! collinear(*minx, *maxx, *miny) ){
internal::Convex_hull_3::ch_quickhull_polyhedron_3(points, minx, maxx,
miny, P, traits);
} else {
internal::Convex_hull_3::ch_quickhull_polyhedron_3(points, point1_it,
point2_it, point3_it, P, traits);
}
CGAL_assertion(P.size_of_vertices()>=3);
if (boost::next(P.vertices_begin(),3) == P.vertices_end()){
typedef typename Traits::Triangle_3 Triangle_3;
typename Traits::Construct_triangle_3 construct_triangle =
traits.construct_triangle_3_object();
Triangle_3 tri =
construct_triangle(P.halfedges_begin()->vertex()->point(),
P.halfedges_begin()->next()->vertex()->point(),
P.halfedges_begin()->opposite()->vertex()->point());
ch_object = make_object(tri);
}
else
ch_object = make_object(P);
}
template <class InputIterator>
void convex_hull_3(InputIterator first, InputIterator beyond,
Object& ch_object)
{
typedef typename std::iterator_traits<InputIterator>::value_type Point_3;
typedef typename
internal::Convex_hull_3::Default_traits_for_Chull_3<Point_3>::type Traits;
convex_hull_3(first, beyond, ch_object, Traits());
}
template <class InputIterator, class Polyhedron_3, class Traits>
void convex_hull_3(InputIterator first, InputIterator beyond,
Polyhedron_3& polyhedron, const Traits& traits)
{
typedef typename Traits::Point_3 Point_3;
typedef std::list<Point_3> Point_3_list;
typedef typename Point_3_list::iterator P3_iterator;
Point_3_list points(first, beyond);
CGAL_ch_precondition(points.size() > 3);
// at least 4 points
typename Traits::Collinear_3 collinear = traits.collinear_3_object();
typename Traits::Equal_3 equal = traits.equal_3_object();
P3_iterator point1_it = points.begin();
P3_iterator point2_it = points.begin();
point2_it++;
// find three that are not collinear
while (point2_it != points.end() && equal(*point1_it,*point2_it))
++point2_it;
CGAL_ch_precondition_msg(point2_it != points.end(),
"All points are equal; cannot construct polyhedron.");
P3_iterator point3_it = point2_it;
++point3_it;
CGAL_ch_precondition_msg(point3_it != points.end(),
"Only two points with different coordinates; cannot construct
polyhedron.");
while (point3_it != points.end() &&
collinear(*point1_it,*point2_it,*point3_it))
++point3_it;
CGAL_ch_precondition_msg(point3_it != points.end(),
"All points are collinear; cannot construct polyhedron.");
polyhedron.clear();
// result will be a polyhedron
internal::Convex_hull_3::ch_quickhull_polyhedron_3(points, point1_it,
point2_it, point3_it,
polyhedron, traits);
}
template <class InputIterator, class Polyhedron_3>
void convex_hull_3(InputIterator first, InputIterator beyond,
Polyhedron_3& polyhedron)
{
typedef typename std::iterator_traits<InputIterator>::value_type Point_3;
typedef typename
internal::Convex_hull_3::Default_traits_for_Chull_3<Point_3>::type Traits;
convex_hull_3(first, beyond, polyhedron, Traits());
}
} // namespace CGAL
#endif // CGAL_CONVEX_HULL_3_H
- [cgal-discuss] Epick convex_hull_3 assertion, Marius Kintel, 01/03/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Marc Glisse, 01/03/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Sebastien Loriot (GeometryFactory), 01/04/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Marius Kintel, 01/04/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Sebastien Loriot (GeometryFactory), 01/05/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Marius Kintel, 01/05/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Sebastien Loriot (GeometryFactory), 01/06/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Marius Kintel, 01/06/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Sebastien Loriot (GeometryFactory), 01/07/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Sebastien Loriot (GeometryFactory), 01/06/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Marius Kintel, 01/05/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Sebastien Loriot (GeometryFactory), 01/05/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Marius Kintel, 01/04/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Marius Kintel, 01/06/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Sebastien Loriot (GeometryFactory), 01/06/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Sebastien Loriot (GeometryFactory), 01/04/2015
- Re: [cgal-discuss] Epick convex_hull_3 assertion, Marc Glisse, 01/03/2015
Archive powered by MHonArc 2.6.18.