Skip to Content.
Sympa Menu

cgal-discuss - Re: [cgal-discuss] Create (almost) regural grid from random points

Subject: CGAL users discussion list

List archive

Re: [cgal-discuss] Create (almost) regural grid from random points


Chronological Thread 
  • From: Simon Giraudot <>
  • To:
  • Subject: Re: [cgal-discuss] Create (almost) regural grid from random points
  • Date: Fri, 15 Jan 2016 08:56:33 +0100
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=None ; spf=None
  • Ironport-phdr: 9a23:DJz6PxWNFvR5iC5pA4CMpX7cqs3V8LGtZVwlr6E/grcLSJyIuqrYZhGPt8tkgFKBZ4jH8fUM07OQ6PC+Hz1Yqs/Y7jgrS99laVwssY0uhQsuAcqIWwXQDcXBSGgEJvlET0Jv5HqhMEJYS47UblzWpWCuv3ZJQk2sfTR8Kum9IIPOlcP/j7n0oM2NJVQQz2PkP/tbF1afk0b4joEum4xsK6I8mFPig0BjXKBo/15uPk+ZhB3m5829r9ZJ+iVUvO89pYYbCf2pN/dwcbsNBzsvNyU55dbgqALYZQqJ/HoVFGsMwTRSBA2Q1xD/WZG5nSrgv/dx3zXSadb3SLcyHzuj9a52RBj0oCgKMDs07HvGhMV7kKVBsVSqoBkpkN2cW52cKPcrJvCVRtgdX2cUBss=

Le 14/01/2016 20:14, Tomil a écrit :
I have a set of random points in 2D.. These points form a Delaunay
Triangulation...(which consists of random triangles)
I want to simplify the original mesh, discarding some of the original points
and create a new triangulation.. So that the new triangles that will emerge,
will be close to equilateral, forming an almost hexagonal grid..

At a first glance, I thought the solution had to do with centroidal voronoi
tessellation (CVT), but in this case the generator points are not part of
the original set...






--
View this message in context:
http://cgal-discuss.949826.n4.nabble.com/Create-almost-regural-grid-from-random-points-tp4661480p4661494.html
Sent from the cgal-discuss mailing list archive at Nabble.com.

I'm not sure this is possible with your input (I assume it is much denser than the regular grid you want to get), but why not simply:
* Create a regular grid from scratch (perfectly regular I mean)
* Replace every point of this grid by the closest input point (if an input point is close enough)

--
Simon Giraudot, PhD
R&D Engineer
GeometryFactory - http://geometryfactory.com/




Archive powered by MHonArc 2.6.18.

Top of Page