Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Dependent elimination question?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Dependent elimination question?


chronological Thread 
  • From: Zhong Shao <shao AT cs.yale.edu>
  • To: coq-club AT pauillac.inria.fr
  • Cc: flint-core AT cs.yale.edu
  • Subject: [Coq-Club] Dependent elimination question?
  • Date: Thu, 3 Feb 2005 14:44:23 -0500 (EST)
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Hi, given the following induction definition: 

   Inductive R (A : Set) : Type := 
        Rep : A -> R(A).

assume that Set is a predicative universe (as in Coq 8.0),

Can I write a function F with the following type: 

            (forall A B : Set) A -> R(A -> B) -> R(B)

The naive way is to write it as: 

  Definition F (A B : Set) (x : A) (y : R(A->B)) : R(B) := 
     match y with 
       Rep y0 => Rep (y0 x)
     end.

which of course does not work since y0 does not has type A->B.

Thanks a lot,

-Zhong Shao
(shao-zhong AT cs.yale.edu)




Archive powered by MhonArc 2.6.16.

Top of Page