Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Re: [Flint-core] Dependent elimination question?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Re: [Flint-core] Dependent elimination question?


chronological Thread 
  • From: "Zhaozhong Ni" <nzz AT acm.org>
  • To: <shao-zhong AT cs.yale.edu>, <coq-club AT pauillac.inria.fr>
  • Cc: <flint-core AT cs.yale.edu>
  • Subject: [Coq-Club] Re: [Flint-core] Dependent elimination question?
  • Date: Thu, 3 Feb 2005 14:52:26 -0500
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

I think the following works:

Definition F (A B : Set) (x : A) (y : R(A->B)) : R(B) :=
 match y with
   Rep y0 => Rep B (y0 x)
 end.

-Zhaozhong

----- Original Message ----- From: "Zhong Shao" <shao AT cs.yale.edu>
To: 
<coq-club AT pauillac.inria.fr>
Cc: 
<flint-core AT cs.yale.edu>
Sent: Thursday, February 03, 2005 2:44 PM
Subject: [Flint-core] Dependent elimination question?


Hi, given the following induction definition:
Inductive R (A : Set) : Type := Rep : A -> R(A).

assume that Set is a predicative universe (as in Coq 8.0),

Can I write a function F with the following type:
           (forall A B : Set) A -> R(A -> B) -> R(B)

The naive way is to write it as:
Definition F (A B : Set) (x : A) (y : R(A->B)) : R(B) := match y with Rep y0 => Rep (y0 x)
    end.

which of course does not work since y0 does not has type A->B.

Thanks a lot,

-Zhong Shao
(shao-zhong AT cs.yale.edu)
_______________________________________________
Flint-core mailing list
Flint-core AT cs.yale.edu
http://netra.cs.yale.edu/mailman/listinfo/flint-core




Archive powered by MhonArc 2.6.16.

Top of Page