coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: "Aaron Bohannon" <bohannon AT cis.upenn.edu>
- To: "Coq List" <coq-club AT pauillac.inria.fr>
- Subject: [Coq-Club]Re: How do I prove this simple fact?
- Date: Wed, 8 Nov 2006 19:28:08 -0500
- Domainkey-signature: a=rsa-sha1; q=dns; c=nofws; s=beta; d=gmail.com; h=received:message-id:date:from:sender:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references:x-google-sender-auth; b=dtepHfr5pjkXb0fuTR10Ypl2Bwap0KFnAzfjxVKZn8n4C9wV4hxlNEOs6nSjP7sMNmmwlYnCUYVI7tozI6WhOrMMwKSteUWC1RNqHIY7acQeMz3WtpzbzX1OSzwOn+UdE68EdqYnkuam3cgcEbebTP9+yKVo63/BbxqWpkNMdZI=
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
On 11/8/06, Aaron Bohannon
<bohannon AT cis.upenn.edu>
wrote:
Given the simple inductive definition here, I would like to prove the
simple lemma below it.
Inductive foo : nat * nat -> Prop :=
| foo1 : forall i j k, i = j + k -> foo (i, j)
| foo2 : forall i j k, foo (i, j + k) -> foo (i, j).
Lemma bar : forall n m, foo (n, m) -> m <= n.
Thanks for the helpful responses. I find the use of the "change"
tactic especially elegant. However, it does not seem applicaple to
the slightly more general case where I would like to prove:
Lemma bar : forall n m p, foo (n, m + p) -> m <= n.
Am I correct in assuming that I need to take one of the longer
approaches when dealing with a lemma like this?
-Aaron
- [Coq-Club]How do I prove this simple fact?, Aaron Bohannon
- Re: [Coq-Club]How do I prove this simple fact?, Adam Chlipala
- Re: [Coq-Club]How do I prove this simple fact?, Andrew McCreight
- Re: [Coq-Club]How do I prove this simple fact?, Thery Laurent
- Re: [Coq-Club]How do I prove this simple fact?, jean-francois . monin
- [Coq-Club]Re: How do I prove this simple fact?, Aaron Bohannon
- Re: [Coq-Club]Re: How do I prove this simple fact?,
Pierre Casteran
- Re: [Coq-Club]Re: How do I prove this simple fact?, Pierre Casteran
- Re: [Coq-Club]Re: How do I prove this simple fact?, jean-francois . monin
- Re: [Coq-Club]Re: How do I prove this simple fact?, Thery Laurent
- Re: [Coq-Club]Re: How do I prove this simple fact?,
Pierre Casteran
Archive powered by MhonArc 2.6.16.