Skip to Content.
Sympa Menu

coq-club - [Coq-Club]Re: How do I prove this simple fact?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club]Re: How do I prove this simple fact?


chronological Thread 
  • From: "Aaron Bohannon" <bohannon AT cis.upenn.edu>
  • To: "Coq List" <coq-club AT pauillac.inria.fr>
  • Subject: [Coq-Club]Re: How do I prove this simple fact?
  • Date: Wed, 8 Nov 2006 19:28:08 -0500
  • Domainkey-signature: a=rsa-sha1; q=dns; c=nofws; s=beta; d=gmail.com; h=received:message-id:date:from:sender:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references:x-google-sender-auth; b=dtepHfr5pjkXb0fuTR10Ypl2Bwap0KFnAzfjxVKZn8n4C9wV4hxlNEOs6nSjP7sMNmmwlYnCUYVI7tozI6WhOrMMwKSteUWC1RNqHIY7acQeMz3WtpzbzX1OSzwOn+UdE68EdqYnkuam3cgcEbebTP9+yKVo63/BbxqWpkNMdZI=
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

On 11/8/06, Aaron Bohannon 
<bohannon AT cis.upenn.edu>
 wrote:
Given the simple inductive definition here, I would like to prove the
simple lemma below it.

Inductive foo : nat * nat -> Prop :=
| foo1 : forall i j k, i = j + k -> foo (i, j)
| foo2 : forall i j k, foo (i, j + k) -> foo (i, j).

Lemma bar : forall n m, foo (n, m) -> m <= n.

Thanks for the helpful responses.  I find the use of the "change"
tactic especially elegant.  However, it does not seem applicaple to
the slightly more general case where I would like to prove:

Lemma bar : forall n m p, foo (n, m + p) -> m <= n.

Am I correct in assuming that I need to take one of the longer
approaches when dealing with a lemma like this?

-Aaron





Archive powered by MhonArc 2.6.16.

Top of Page