coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Jean-Francois Monin <Jean-Francois.Monin AT imag.fr>
- To: Edsko de Vries <edsko AT edsko.net>
- Cc: coq-club AT pauillac.inria.fr
- Subject: Re: [Coq-Club] Property of subsubstructures
- Date: Fri, 12 Oct 2007 09:50:39 +0200
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Yes you can use use the proof style of the first attempt.
Just state a slightly stronger lemma.
Theorem bar_zero : forall (l:L), foo l = 0 /\ foo (Ind l) = 0.
induction l; info intuition.
Qed.
Theorem foo_zero : forall (l:L), foo l = 0.
intro l; generalize (bar_zero l); info intuition.
Qed.
Jean-Francois
On Thu, Oct 11, 2007 at 03:25:34PM +0100, Edsko de Vries wrote:
> Hi,
>
> Suppose we have a definition such as
>
> Inductive L : Set :=
> | Base : L
> | Ind : L -> L.
>
> Then when we do a proof by induction on L, for the 'Ind' case, the induction
> principle derived by Coq tells me that the property holds for the sub-L.
> However, what if we need to know that the property holds for a sub-sub-L?
> For
> example, consider
>
> Fixpoint foo (l: L) : nat := match l with
> | Base => 0
> | Ind l' => match l' with
> | Base => 0
> | Ind l'' => foo l''
> end
> end.
>
> Theorem foo_zero : forall (l:L), foo l = 0.
>
> When I try to do a normal proof by induction, the induction hypothesis is no
> use in the Ind Ind case:
>
> Proof.
> induction l.
> reflexivity.
> induction l.
> reflexivity.
> simpl.
>
> 1 subgoal
> l : L
> IHl : foo (Ind l) = 0
> IHl0 : foo l = 0 -> foo (Ind l) = 0
> ______________________________________(1/1)
> foo l = 0
>
> At which point we're stuck (I think?). Now, up until recently the
> 'induction principle' was a bit of magic to me, until I realised that it
> was simply a fold (in the functional programming sense), and that so it
> must be possible to define these proofs directly. Indeed, I can prove
> foo_zero as follows:
>
> Proof.
> refine (fix f (l:L) : foo l = 0 := _).
> elim l.
> reflexivity.
> intros.
> elim l0.
> reflexivity.
> intros.
> simpl.
> apply f.
> Qed.
>
> Although I'm quite happy I understood this, I would still like to be able to
> use the proof style of the first attempt. Is it possible?
>
> Thanks!
>
> Edsko
>
> --------------------------------------------------------
> Bug reports: http://logical.futurs.inria.fr/coq-bugs
> Archives: http://pauillac.inria.fr/pipermail/coq-club
> http://pauillac.inria.fr/bin/wilma/coq-club
> Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
>
>
--
Jean-Francois Monin Univ. Joseph Fourier, GRENOBLE
VERIMAG - Centre Equation http://www-verimag.imag.fr/~monin/
2 avenue de Vignate tel (+33 | 0) 4 56 52 04 39
F-38610 GIERES fax (+33 | 0) 4 56 52 04 46
- [Coq-Club] Property of subsubstructures, Edsko de Vries
- Re: [Coq-Club] Property of subsubstructures,
Pierre Courtieu
- Re: [Coq-Club] Property of subsubstructures,
Edsko de Vries
- Re: [Coq-Club] Property of subsubstructures,
Pierre Courtieu
- Re: [Coq-Club] Property of subsubstructures, Pierre Courtieu
- Re: [Coq-Club] Property of subsubstructures,
Pierre Courtieu
- Re: [Coq-Club] Property of subsubstructures,
Edsko de Vries
- Re: [Coq-Club] Property of subsubstructures, Pierre Courtieu
- Re: [Coq-Club] Property of subsubstructures,
Edsko de Vries
- Re: [Coq-Club] Property of subsubstructures, Jean-Francois Monin
- Re: [Coq-Club] Property of subsubstructures, Matthieu Sozeau
- <Possible follow-ups>
- Re: [Coq-Club] Property of subsubstructures,
Santiago Zanella
- Re: [Coq-Club] Property of subsubstructures, Edsko de Vries
- Re: [Coq-Club] Property of subsubstructures,
Pierre Courtieu
Archive powered by MhonArc 2.6.16.