Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Partial Witness

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Partial Witness


chronological Thread 
  • From: Adam Chlipala <adamc AT hcoop.net>
  • To: Jeff Terrell <jeff AT kc.com>
  • Cc: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] Partial Witness
  • Date: Tue, 03 Mar 2009 09:14:43 -0500
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Jeff Terrell wrote:
Dear Matthew,

Matthew Brecknell wrote:
Reading between the lines, I'm wondering if you might actually have
meant to write this:

Theorem T :
forall l : list Process, exists m : list Package,
  forall p : Process, In p l -> exists a : Package,
    In a m /\
    PID p = AID a /\
    forall n : nat,
      In n (X p) /\ n > 0 <-> In n (Y a).

Your theorem above tie things down quite nicely - many thanks for that. But I was also wondering (for curiosity sake more than anything else) whether <-> could be replaced by ->, if the implicand constrained Y to be the smallest possible list. If that were possible, (X p') wouldn't then be a witness.

Do you have some convention in mind for doing such constraining with an implication? I've never seen such a feature in logic or math, on paper or on a computer. You could certainly do it with an extra conjunction and universally-quantified fact, though.





Archive powered by MhonArc 2.6.16.

Top of Page