Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Need help with coinductive proof

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Need help with coinductive proof


chronological Thread 
  • From: Nils Anders Danielsson <nad AT Cs.Nott.AC.UK>
  • To: coq-club <coq-club AT pauillac.inria.fr>
  • Subject: Re: [Coq-Club] Need help with coinductive proof
  • Date: Mon, 24 Aug 2009 17:42:49 +0100
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

On 2009-08-24 16:28, Edsko de Vries wrote:
Now, waving my hands, in the proof that this implies bisimularity, we proceed by coinduction, inversion on [bisim_CF], and then for the case of [bisim_CF_prod] we simply reason

  h (m + n) ~ h m + h n ~ m' + n'

which uses an auxiliary lemma "add_bisim" that m + n ~ m' + n' if m ~ m' and n ~ n'; we need to reason that h m ~ m' and h n ~ n' "by coinduction". Unfortunately, this is not guarded, because the recursive calls will be used as arguments to "add_bisim" and to transitivity.

This is a common problem with guarded corecursion. There are several
possible workarounds. Currently I like to use a technique which I posted
about on this mailing list last year; you can read about it in the
following paper draft (written with Thorsten Altenkirch):

 Mixing Induction and Coinduction
 http://www.cs.nott.ac.uk/~nad/publications/danielsson-altenkirch-mixing.html

I have not checked whether the technique would work in this particular
case, though.

--
/NAD

This message has been checked for viruses but the contents of an attachment
may still contain software viruses, which could damage your computer system:
you are advised to perform your own checks. Email communications with the
University of Nottingham may be monitored as permitted by UK legislation.





Archive powered by MhonArc 2.6.16.

Top of Page