Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Need help with coinductive proof

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Need help with coinductive proof


chronological Thread 
  • From: Thorsten Altenkirch <txa AT Cs.Nott.AC.UK>
  • To: Edsko de Vries <edskodevries AT gmail.com>
  • Cc: Coq Club <coq-club AT pauillac.inria.fr>, Agda List <agda AT lists.chalmers.se>
  • Subject: Re: [Coq-Club] Need help with coinductive proof
  • Date: Thu, 27 Aug 2009 15:03:08 +0100
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Hi Edsko,

So far, so good. However, now consider the proof mentioned at the start. The standard bisimulation on conat's is defined like Thorsten did, except that I index the maximum delay (number of taus) using a natural number, rather than mixing coinduction and induction:

CoInductive bisimilar_conat : nat -> conat -> conat -> Prop :=
  | bisim_cozero : forall d,
      bisimilar_conat d cozero cozero
  | bisim_cosucc : forall d' d m n,
      bisimilar_conat d' m n ->
      bisimilar_conat d (cosucc m) (cosucc n)
  | bisim_tau : forall d' d m n,
      bisimilar_conat d' m n ->
      bisimilar_conat d (tau_conat m) (tau_conat n)
  | bisim_tau_left : forall d m n,
      bisimilar_conat d m n ->
      bisimilar_conat (S d) (tau_conat m) n
  | bisim_tau_right : forall d m n,
      bisimilar_conat d m n ->
      bisimilar_conat (S d) m (tau_conat n).


However, (exists n:nat,bisimilar_conat n a b) is different from a ≈ b because there doesn't have to be a maximum delay (it is easy to construct a counterexample).

Isn't is possible to construct nested coinductive-inductive types in Coq?

Cheers,
Thorsten


This message has been checked for viruses but the contents of an attachment
may still contain software viruses, which could damage your computer system:
you are advised to perform your own checks. Email communications with the
University of Nottingham may be monitored as permitted by UK legislation.





Archive powered by MhonArc 2.6.16.

Top of Page