Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Re: [Agda] Agda with excluded middle is inconsistent

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Re: [Agda] Agda with excluded middle is inconsistent


chronological Thread 
  • From: Noam Zeilberger <noam.zeilberger AT gmail.com>
  • To: David Wahlstedt <david.wahlstedt AT gmail.com>
  • Cc: Chung Kil Hur <Chung-Kil.Hur AT pps.jussieu.fr>, coq-club AT inria.fr, Agda mailing list <agda AT lists.chalmers.se>
  • Subject: [Coq-Club] Re: [Agda] Agda with excluded middle is inconsistent
  • Date: Fri, 8 Jan 2010 12:05:41 +0100
  • Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:in-reply-to:references:date:message-id:subject:from:to :cc:content-type:content-transfer-encoding; b=kga8jNykR1VJ1VOXKDyDTwHZQLfM4nk5X3z1dMI7VI2NS2wFqWcbf/KFj+NC9QJcQD 3saqFyRRfj7BA1qZqJKUvftEGyTAur6GuXQv3T1nOZuuKmOM3BxZk1Bdu02+iaRWOj+6 LFE41Ue5QB5+L2V//JTv8ux19m5vGgSo7d8FU=
  • List-archive: <http://lists.chalmers.se/pipermail/agda>
  • List-id: Agda implementors and users group <agda.lists.chalmers.se>
  • Resent-date: Tue, 19 Jan 2010 15:52:21 +0100
  • Resent-date: Tue, 19 Jan 2010 15:52:21 +0100
  • Resent-from: Hugo Herbelin <Hugo.Herbelin AT inria.fr>
  • Resent-message-id: <20100119145221.GH17061 AT pirogue.inria.fr>
  • Resent-to: coq-club AT inria.fr

On Fri, Jan 8, 2010 at 11:33 AM, Noam Zeilberger
<noam.zeilberger AT gmail.com>
 wrote:
> On Fri, Jan 8, 2010 at 11:18 AM, David Wahlstedt
> <david.wahlstedt AT gmail.com>
>  wrote:
>> Hi,
>> I have read through the two threads on this topic, and:
>> Sorry if I mention something that is "too basic" / "naive", but, to clarify
>> even more on Thorstens remark about the compatibility of MLTT with EM, it
>> should be recalled that ~~(P \/ ~P) is a theorem even in very basic
>> intuitionistic logic.
>> So if we add something to our system such that ~(P \/ ~P) becomes a 
>> theorem,
>> we really have got an inconsistent system, without having to assume 
>> anything
>> non-constructive. Or have I missed something ?
>
> Of course you're right.

On second thought, I am not sure about this.  To derive a
contradiction from Chung-Kil's example you would need to commute a
second-order quantifier.  He uses:

LEM = ∀ P. P \/ ~P

In intuitionistic second-order logic you can prove ∀ P.~~(P \/ ~P),
but not ~~(∀ P. P \/ ~P).

Noam
_______________________________________________
Agda mailing list
Agda AT lists.chalmers.se
https://lists.chalmers.se/mailman/listinfo/agda





Archive powered by MhonArc 2.6.16.

Top of Page