Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Re: [Agda] Agda with excluded middle is inconsistent

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Re: [Agda] Agda with excluded middle is inconsistent


chronological Thread 
  • From: Thorsten Altenkirch <txa AT Cs.Nott.AC.UK>
  • To: Noam Zeilberger <noam.zeilberger AT gmail.com>
  • Cc: David Wahlstedt <david.wahlstedt AT gmail.com>, Chung Kil Hur <Chung-Kil.Hur AT pps.jussieu.fr>, coq-club AT inria.fr, Agda mailing list <agda AT lists.chalmers.se>
  • Subject: [Coq-Club] Re: [Agda] Agda with excluded middle is inconsistent
  • Date: Fri, 8 Jan 2010 13:19:35 +0000


On 8 Jan 2010, at 11:05, Noam Zeilberger wrote:

> On Fri, Jan 8, 2010 at 11:33 AM, Noam Zeilberger
> <noam.zeilberger AT gmail.com>
>  wrote:
>> On Fri, Jan 8, 2010 at 11:18 AM, David Wahlstedt
>> <david.wahlstedt AT gmail.com>
>>  wrote:
>>> Hi,
>>> I have read through the two threads on this topic, and:
>>> Sorry if I mention something that is "too basic" / "naive", but, to 
>>> clarify
>>> even more on Thorstens remark about the compatibility of MLTT with EM, it
>>> should be recalled that ~~(P \/ ~P) is a theorem even in very basic
>>> intuitionistic logic.
>>> So if we add something to our system such that ~(P \/ ~P) becomes a 
>>> theorem,
>>> we really have got an inconsistent system, without having to assume 
>>> anything
>>> non-constructive. Or have I missed something ?
>
>> Of course you're right.
> 
> On second thought, I am not sure about this.  To derive a
> contradiction from Chung-Kil's example you would need to commute a
> second-order quantifier.  He uses:
> 
> LEM = ∀ P. P \/ ~P
> 
> In intuitionistic second-order logic you can prove ∀ P.~~(P \/ ~P),
> but not ~~(∀ P. P \/ ~P).
> 
> Noam

You are right. One doesn't even need 2nd order logic, while we can prove

        ~((P0 \/ ~P0) /\ (P1 \/ ~P1) /\ .. /\ (Pn \/ ~Pn))

I don't think one can prove for any A:Set, P : A -> Prop

        ~( forall a:A . P a \/ ~ (P a) )

but this is certainly used in Chung's proof (e.g. in the construction of J).

Thorsten
 



Archive powered by MhonArc 2.6.16.

Top of Page